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Online linear regression
Adversarial setting

Nature: Provides (xt)t≥1 ∈ Rd and yt ∈ [−Y ,Y ] for a fixed Y ∈ R+

Interaction protocol: At step t
Nature provides xt ∈ Rd

The learner chooses θ̂t−1 and predicts ŷt = x>t θ̂t−1

Nature chooses yt and shows it to the learner
The learner suffers loss `t = (yt − ŷt)2

Objective: minimize the cumulative regret

RAT = LAT −minθ LT (θ) =
∑T

t=1 `
A
t −minθ LT (θ)
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Literature
1/2

Online ridge regression
Input: initial parameter θr ∈ Rd , and regularization λ ∈ R+

for t = 1, 2, . . . ,T
Observe input xt
predict ŷt = xT

t θ
r
t−1 ∈ R

observe yt
incur `t ∈ R
θr

t ∈ argminθ Lt(θ) + λ||θ||22
end for

The optimization has a closed form solution:

θr
t =

(
λI +

t∑
q=1

xqx>q

)−1

︸ ︷︷ ︸
def
= Gt (λ)−1

t∑
q=1

xqyq︸ ︷︷ ︸
def
= bt

.
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Literature
2/2

The forward algorithm (aka the Vovk-Azoury-Warmuth forecaster)
[Vovk, 2001, Azoury and Warmuth, 2001]

Input: initial θ0 ∈ Rd , and regularization λ ∈ R+

for t = 1, 2, . . . ,T
Observe input xt
θf

t−1 ∈ argminθ Lt−1(θ) + λ||θ||22 +(xT
t θ)2

predict ŷt = xT
t θ

f
t−1 ∈ R

observe yt
incur `t ∈ R

end for

The optimization has a closed form solution:

θf
t = G−1

t+1bt = ( Gt︸︷︷︸
Same as Ridge

+xt+1x>t+1)−1 bt︸︷︷︸
Same as Ridge
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Regret bounds
Existing results

Online ridge regression achieves the bound:

Lr
T −minθ

(
LT (θ) + λ‖θ‖2

2
)
≤ 4 (Y r )2 d log

(
1 + TX 2

λd

)
,

where X = max1≤t≤T ‖xt‖2, and Y r = max1≤t≤T
{
|yt | ,

∣∣x>t θt−1
∣∣} .

Forward regression (see [Vovk, 2001]) achieves:

Lf
T −minθ

(
LT (θ) + λ‖θ‖2

2
)
≤
(
Y f )2 d log

(
1 + TX 2

λd

)
,

where X = max1≤t≤T ‖xt‖2, and Y f = max1≤t≤T |yt |.
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Limitations of the analysis

For Ridge regression R r
T ≤ 4 (Y r )2 d log

(
1 + TX 2

λd

)
+ λ(Y r )2T

λrT (GT (0))

Two issues:

1. Bound on labels: we have Y r = max1≤t≤T
{
|yt |,

∣∣x>t θt−1
∣∣}

The predictions x>t θt−1 are not necessarily bounded
The latter cannot be mitigated unless Y is known

2. Regularization: λrT is the smallest eigenvalue of λId +
∑T

q=1 xqx>q .

To cancel out λ(Y r )2T
λrT (GT (0)) , λ should be of order 1/T

λ ∼ 1/T yields R r
T . 8(Y r )2 log(T ) and R f

T . 2Y 2 log(T )

[Gaillard et al., 2019] Provides a tight lower bound of dY 2 log(T )
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Stochastic online linear regression:

Nature: Provides (xt)t≥1 ∈ Rd and θ∗ ∈ Rd

Data generating process: yt
def
= x>t θ∗ + εt ∈ R where the noise sequence

is σ-sub-Gaussian, i.e.

∀t ≥ 1,∀γ ∈ R : E [exp(γε)] ≤ exp(σ2γ2/2).

Interaction protocol: At step t
Nature provides xt ∈ Rd

The learner chooses θ̂t−1 and predicts ŷt = x>t θ̂t−1

Nature chooses yt and shows it to the learner
The learner suffers loss `t = (yt − ŷt)2

Objective: minimize the cumulative regret

RAT = LAT −minθ LT (θ) =
∑T

t=1 `
A
t −minθ LT (θ)
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Limitations of the analysis
1/2: Too generic

In the final step of the analysis we have

For ridge regression:

Lr
T −min

θ

(
LT (θ) + λ‖θ‖2

2
)
≤

T∑
t=1

(
x>t θt−1 − yt

)2 x>t G−1
t xt︸ ︷︷ ︸

first term

≤ 4(Y r )2
T∑

t=1
x>t G−1

t xt

For the forward algorithm:

Lf
T −min

θ

(
LT (θ) + λ‖θ‖2

2
)
≤

T∑
t=1

y2
t x>t G−1

t xt︸ ︷︷ ︸
first term

−
T−1∑
t=1

x>t+1G−1
t xt+1

(
x>t+1θt

)2︸ ︷︷ ︸
second term

≤ Y 2
T∑

t=1
x>t G−1

t xt + 0
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Limitations of the analysis
1/2: Too generic
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Figure: Online regret. y -axis is logarithmic.
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Limitations of the analysis
2/2: bounded observations

Time dependence: YA hides a time-dependence

•For the forward algorithm: Y f = max1≤t≤T |x>t θ∗ + εt | verifies

∀T ≥ 1 : E[Y f] ≥ E
[

max
1≤t≤T

εt

]
− X‖θ∗‖2 ≥ σC

√
2 log(T )− X‖θ∗‖2

•(YA)2 appears in previous bounds =⇒ stochastic regret of order log(T )2.

Is the sub-Gaussian stochastic setting strictly harder than the bounded
adversarial counterpart?
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High probability bounds (contributions)
Stochastic setting, sub-Gaussian noise

Recall the regret RAT = LAT −minθ′ LT (θ′).

Definition (new regret) for algo A, define R̄AT = LAT − LT (θ∗).

Theorem (Regret equivalence) w.p 1− δ, for all ‖xt‖2 ≤ X , |GT (0)| > 0

RAT = R̄AT + o
(
log(T )2)

Remarks:
This equivalence is hard to prove because it doesn’t involve a
regularization, we needed uniform confidence intervals that hold once
the design matrix is non-singular
We will see that the regret is of order log(T )2, thus the previous result
implies that we can use the new regret definition equivalently
Proof sketch: the difference of the two regrets is basically due to the
noise, we control the latter with concentration arguments
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High probability bounds (contributions)
Stochastic setting, sub-Gaussian noise

Theorem (Regret bounds) w.p 1− δ,

R̄r
T ≤

2dσ2X 2

λ log(1 + X 2/λ)
log (T ) log

(
T d/2/δ

)
+ o(log(T )2),

R̄f
T ≤ 2dσ2 log (T ) log

(
T d/2/δ

)
+ o(log(T )2),

where X = max1≤t≤T ‖xt‖2.

Remarks
The bounds hold with high probability uniformly over T
For Ridge regression, 1/λ emerges from bounding 1/λmin(Gt(0)) in the
worst case.
This analysis lifts the “stringent regularization” that requires λ = 1/T .
Therefore, our theorems are not a mere consequence of bounding Y 2

with high probability in previous deterministic theorems.
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Tightness of our bounds
1/2

Theorem [Tirinzoni et al., 2020] Let δ ∈ (0, 1), n ≥ 3, and θ̂t be a regularized
least-square estimator obtained using t ∈ [n] samples, then

P
{
∃t ∈ [n] :

∥∥∥θ̂t − θ∗
∥∥∥

V̄t
≥ √cn,δ

}
≤ δ

where cn,δ is of order O(log(1/δ) + d log log n).

Implication:

Improved upper-bound: RT = O
(
dσ2 log(T ) log log(T )

)
.
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Tightness of our bounds
2/2

Theorem [Mourtada, 2019], Informal: The worst case online regret scales as:

inf
β̂n

sup
P∈PGauss (PX ,σ2)

E
[
EP

(
β̂n

)]
>

σ2d
n − d + 1

Implications:
The regret lower bound is of order: O(σ2d log(n))

The improved bounds are of order Õ(σ2d log(n)) where the Õ hides
sub-logarithmic factors
This suggests the optimality of the forward algorithm
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Experiments
Empirical comparison

Experiment description: We consider a 5 dimensional regression setting, and
we vary λ ∈ {1/T , 1/ log(T ), 1, 10}. The noise is drawn from a Gaussian
with σ = 0.1 and features are drawn randomly from the unit ball.
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Figure: Left is Ridge regression and right is the Forward algorithm. Axes are
logarithmic. Performance is averaged over 100 repetitions and shaded areas
represent one standard deviation.
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Application: linear bandits
Setting

Interaction protocol: At step t
Nature provides the action space Xt ⊂ Rd

Learner chooses an action (arm) xt ∈ Xt

Nature reveals reward for the selected arm

Linear setting: In linear bandits, the reward of action xt at time t is

yt = 〈xt , θ∗〉+ εt

where θ∗ ∈ Rd is unknown, ‖θ∗‖2 ≤ S.

Objective: The learner aims to minimize the (pseudo)regret defined as:

RT = max
x∈X

T∑
t=1
〈x − xt , θ∗〉
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Application: linear bandits
Standard algorithm: 1/2

Optimism in the face of uncertainty [Abbasi-Yadkori et al., 2011]: Ridge
regression and choose arm that maximizes the upper confidence bound.

Algorithm 1 OFUL algorithm
1: Input parameters: λ, δ, S > 0
2: for all t = 1, . . . ,T
3: Define Gt−1,x =

∑t−1
s=1 xsx>s

4: Define θr
t = argminθ∈Rd ,‖θ‖2≤S

∑t−1
s=1(ys − 〈xs , θ〉)2 + λ‖θ‖2

2

5: Define xt = argmaxx∈X 〈x , θr
t 〉+ ‖x‖G−1

t−1
(1 + S

√
λ)

+ σ

√
2 log

(
(1+tX 2/λd)d/2

δ

)
6: play xt and observe yt .
7: end for
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Application: linear bandits
Standard algorithm: 2/2

Standard assumption: for all xt ∈ X 〈xt , θ∗〉 ∈ [−1, 1] .

Theorem [Abbasi-Yadkori et al., 2011] Under the above assumption, w.p
1− δ, for all T > 0:

Rr
T ≤4

√
Td log(λ+TX 2/d)

(
σ
√

2 log(1/δ)+d log(1+TX 2/(λd))+S
√
λ

)
,

where X = max1≤t≤T ‖xt‖2.

Limitations:
The algorithm requires prior knowledge of the rewards’ bound for the
confidence bound construction
If we study the regret instead of pseudo-regret, the standard analysis no
longer holds
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Application: linear bandits
Contribution: improved OFUL algorithm

OFULf : Forward regression mixed with UCB.

Algorithm 2 OFULf algorithm

1: Input parameters: λ, δ, S > 0
2: for all t = 1, . . . ,T
3: Define Xt(x) = max{‖x‖2,max1≤s≤t−1 ‖xs‖2}, Gt−1,x = Gt−1 + xx>

4: Define θft (x) = argminθ∈Rd
∑t−1

s=1(ys − 〈xs , θ〉)2 + λ‖θ‖2
2 + 〈x , θ〉2

5: Define xt = argmaxx∈X 〈x , θft (x)〉+ ‖x‖G−1
t−1,x

(
√
λ+ ‖x‖2)S

+ σ

√
2 log

(
(1+tX 2

t (x)/λd)d/2

δ

)
6: play xt and observe yt .
7: end for

Stochastic online regression 20



Application: linear bandits
OFULf: analysis

Theorem: w.p 1− δ, for all T ≥ 1:

Rf
T ≤4

√
Td log(λ+TX 2/d)

(
σ
√

2log(1/δ)+d log(1+TX 2/(λd))+(λ1/2 +X )S
)
.

Without the common assumption, w.p 1− δ, for all T ≥ 1,

Rr
T ≤4

√
XXX 2Td log(λ+TX 2/d)

λλλlog(1 + XXX 2/λλλ)

(
S
√
λ+σ

√
2log(1/δ)+d log(1+TX 2/(λd))

)
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Application: linear bandits
Experiment: description

Setup: Consider a 100-dimensional linear bandit with 10 arms:
θ∗ is drawn from the unit ball
Actions are such that ‖xt‖2 ≤ 200
Noise εt L= N (0, 10−1), T = 105, λ = 10−5, δ = 10−3.

Regularization choice We choose λ = 1/T , there are two reasons for this:
1. The adversarial bounds suggest that λ = 1/T is best, and we want to

demonstrate the benefits of our stochastic analysis
2. To showcase the increased robustness of OFULf compared to OFUL.

(More often than not, OFUL performs as good as OFULf )
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Application: linear bandits
Experiment: result
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Figure: Cumulative regret. y -axis is logarithmic.

Observations:
As predicted by the bounds, λ = 1/T incurs linear regret for OFUL
OFULf is robust even for λ = 1/T
OFULf is robust and drops the bounded rewards assumption
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Unregularized forward

The unregularized forward algorithm [Gaillard et al., 2019]
Input: initial θ0 ∈ Rd , and regularization λ ∈ R+

for t = 1, 2, . . . ,T
Observe input xt
θuf

t−1 ∈ argminθ Lt−1(θ) +(xT
t θ)2

predict ŷt = xT
t θ

uf
t−1 ∈ R

observe yt
incur `t ∈ R

end for

One of the solutions of the optimization has a closed form:

θf
t = G†t+1bt = ( Gt︸︷︷︸

Same as Ridge

+xt+1x>t+1)† bt︸︷︷︸
Same as Ridge
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Unregularized forward
Existing results: adversarial setting

The old bounds are not usable: they blow up for λ = 0

Theorem [Gaillard et al., 2019] For all T ≥ 1, for all sequences
x1, . . . , xT ∈ Rd such that ‖xt‖2 ≤ X and all y1, . . . , yT ∈ [−Y ,Y ], the
unregularized forward achieves the uniform regret bound

sup
u∈Rd
RT (u) 6 dY 2 ln T + dY 2 + Y 2

∑
t∈[1,T ]∩T

ln

(
X 2

λrt (Gt)

)
.

where the set T contains rT rounds for which rank (Gs−1) 6= rank (Gs).

This algorithm is optimal: it matches the known lower bound, but the second
term could be (and stay) arbitrarily large
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Unregularized forward
Stochastic setting: contribution

Theorem The unregularized forward regression achieves, for any δ > 0, with
probability at least 1− δ for all T > 0:

R̄u−f
T ≤ 2(1 + κ)(1 + α)σ2 log

(
κd (1 + TX 2/γd)

δ/4

)
log

(
|G†T |
|G†T1
|

)

+ 2σ2 log

(
4T1
δ

)(
d +

∑
1≤t≤T1,t∈T

log

(
X 2

λrt (
∑t

s=1 xtx>t )

))
,

where κ, α ∈ R∗+ are (chosen) peeling parameters, γ = min1≤t≤T ‖xt‖2, .
T1 = min {t ≥ 1, |Gt | > 0} is the first time the design matrix is non-singular.
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Conclusion and perspectives
This paper:

◦ Revisits the analysis of online linear regression algorithms in the stochastic
setup, with possibly unbounded observations

◦ Provides novel understanding of online regression algorithms:
1. The first analysis of ridge regression without bounded predictions or

prior knowledge of the observations’ bound
2. Our novel bounds seem to correctly capture the dependence with

regularization

◦ Replaces ridge by forward in linear approximations:
1. Theory: forward enjoys standard regret; drops boundedness Assumption
2. Practice: forward makes the algorithm robust to regularization

◦ Claims that the forward improvement is expandable: we provide the
analysis for non-stationary linear bandits in the appendix of our paper
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Thank you for your interest in the paper

Questions?
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