
Online Sign Identification: Minimization of the Number of Errors in
Thresholding Bandits

Reda Ouhamma*, Rémy Degenne*, Pierre Gaillard†, Vianney Perchet‡
* Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France. † Univ. Grenoble Alpes, Inria, CNRS, Grenoble

INP, LJK, 38000 Grenoble, France. ‡ Crest, Ensae & Criteo AI Lab
Setting and contributions

Online sign identification

• Multi-armed bandit: Arm k ∼ νk , mean µk , variance σ2

• predict sk = sign(µk) ∈ {−1, 1}.

• Given weights (ak)1≤k≤K ∈ R and budget of T samples, minimize

LT =
∑K

k=1 akI {ŝk ̸= sk}

Contributions: We investigate the thresholding bandit problem with a
weighted number of errors loss. Our contributions are:

1. A generic method to design algorithms, with generic proof and
good performance on the weighted number of errors loss

2. The class of algorithms we analyze includes both LSA and APT, we
improve the exponential decay rate in their bound: by a factor of
4005 for LSA and 8 for APT

3. Lower-bounds and counter-intuitive results regarding adaptivity

Oracle & lower bounds
Non-adaptive oracle

• If known gaps (∆k = |µk|
σ
√
2

), fixed pull number Nk,T of arm k, then

using Hoeffding’s inequality: E [LT ] ≤
K∑

k=1

ake
−Nk,T∆2

k
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Remark: This oracle doesn’t pull the arms with index smaller than k0.
Lower bound: fix {∆k, k ∈ [K]} and T ≥ K. For any algorithm, there
exists µk ∈ {∆k,−∆k} such that

E [LT ] ≥ 1
4 min∑

k Nk=T

∑K
k=1 ake

−4Nk∆
2
k

A good algorithm pulls all arms: There exists µ1, µ2, µ1,ϵ, µ2,ϵ that if
maxµ̃∈µ1,µ2

Eµ̃ [LT ] ≤ c1 min∑
k Nk=T

∑
k e

−c0Nk∆
2
k then

maxµ∈{µ1,ϵ,µ2,ϵ} Eµ

[∑k0
k=1 Nk,T

]
= Ω(T )

Remark: The latter implies that we cannot achieve the M-shaped allo-
cation given by the non-adaptive oracle.

Index-based algorithms
We consider Index-based algorithms: at time t+ 1 pull:

it+1 ∈ arg min
k∈[K]

F (Nk,t, Nk,t∆̂
2
k,t, ak)

Algorithm 1 Index-based algorithms for thresholding bandit
1: Input parameters: an index function F : N × R+ × R∗

+ → R,
a1, . . . , aK > 0, σ > 0

2: for all t ∈ [T ] do do
3: for all k ∈ [K] define do
4: Nk,t−1 =

∑t−1
s=1 I{k = is}, µ̂k,t−1 = 1

Nk,t−1

∑t−1
s=1 I{k = is}Xs

∆̂2
k,t−1 = 1

2σ2 µ̂
2
k,t−1

5: end for
6: pull it ∈ arg min

k∈[K]
F (Nk,t−1, Nk,t−1∆̂

2
k,t−1, ak).

7: observe Xt ∼ νit
8: end for
9: Define tmax = max

t∈[T ]
min
k∈[K]

F (Nk,t, Nk,t∆̂
2
k,t, ak)

10: Return for each k ∈ [K], ŝk = sign(µ̂k,tmax)

Assumption The index function F (n, x, a): N × R+ × R∗
+ → R is non-

decreasing in n and x and limn→+∞ F (n, ny, a) = +∞ for all y > 0, a > 0.

Examples: we recall the following algorithms

• LSA of [1]: it+1 = argmink∈[K] Nk,t∆̂
2
k. Equivalent to F (n, x) = x.

• APT of [2]: it+1 = argmink∈[K] αNk,t∆̂
2
k,t + logNk,t. Equivalent to

F (n, x) = x+ log(n).

FWT algorithm statement, intuition
Intuition behind FWT:

1. Write the loss upper bound: B (NT ) =
∑K

k=1 ake
−Nk,T∆2

k

2. Estimate its gradient sequentially:∇B (Nt) =
(
−ak∆

2
ke

−Nk,t∆
2
k

)
k

3. Gaps must be estimated =⇒ ∇̂B (Nt)k = −ak∆̂
2
ke

−Nk,t∆̂
2
k,t

4. Frank-Wolfe recommends F0 (n, x, ak) = x− log x+ log(n/ak)

5. F0 is decreasing in x for x ∈ (0, 1) so we propose the modification:

F FWT (n, x, ak) = max{x, 1} − log(max{x, 1}) + log (n/ak)

Deriving LSA & APT:

• APT: can be derived similarly to FWT (see above) using the upper-
bound:

E[LT ] = E

[
K∑

k=1

akI{ŝk ̸= sk}

]
≤ B(Nt) = max

k∈[K]
e−Nk,t∆

2
k .

• LSA: Derived using the same upper-bound as FWT, with a differ-
ent solution for the instability: Instead of step 5 (see above), they
estimate:

∆̂−1
i ∼

√
Ni,t.

Loss analysis
Theorem: Assume that ak = 1, it comes:
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Remarks:

• Theorem 2 in the paper is less explicit but more general and holds
for all T > 0.

• LSA’s bound is less explicit , close to FWT’s for large T .
• Our bounds improve over the original results in terms of the ex-

ponential decay rate: LSA by a factor of 4005 and APT by 8
• LSA & FWT recover the exponent of the oracle (up to factor 1/4).

Empirical illustration: Consider ∆i = (i/K)2. In the left figure (below)
we compare the loss upper bounds, in the right one we see the oracle
and empirical sampling distributions with respect to µ.
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Conclusion
◦ For thresholding bandits:

1. We propose FWT that achieves explicit finite time loss bounds

2. We use our proof to improve the original bound of LSA by a fac-
tor of 4005 and APT by 8.

3. Our method, FWT, is within a factor 4 of the oracle.

◦ Other results in the paper:

1. Extension to the sum-of-gaps objective

2. Benefits of adaptivity, our algorithms surpass the optimal non-
adaptive oracle empirically in certain settings.

◦ Future work: the paper could be complemented by a deeper
theoretical analysis of adaptivity.
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