

Reda Ouhamma^{*}, Rémy Degenne^{*}, Pierre Gaillard[†], Vianney Perchet[‡] Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France.[†] Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP. LJK. 38000 Grenoble, France. [‡] Crest, Ensae & Criteo AI Lab

Setting and contributions

Online sign identification

- Multi-armed bandit: Arm $k \sim \nu_k$, mean μ_k , varia
- predict $s_k = sign(\mu_k) \in \{-1, 1\}.$
- Given weights $(a_k)_{1 \le k \le K} \in \mathbb{R}$ and budget of T sa

 $L_T = \sum_{k=1}^K a_k \mathbb{I}\left\{\hat{s}_k \neq s_k\right\}$

<u>Contributions</u>: We investigate the thresholding bandi weighted number of errors loss. Our contributions an

- 1. A generic method to design algorithms, with ge good performance on the weighted number of e
- 2. The class of algorithms we analyze includes both improve the exponential decay rate in their bour 4005 for LSA and 8 for APT
- 3. Lower-bounds and counter-intuitive results rega

Index-based algorithms

We consider **Index-based algorithms:** at time t + 1 pu $i_{t+1} \in \arg\min_{k \in [K]} F(N_{k,t}, N_{k,t}\hat{\Delta}_{k,t}^2, a_k)$ **Algorithm 1** Index-based algorithms for thresholding 1: Input parameters: an index function $F: \mathbb{N} \times$ $a_1, \ldots, a_K > 0, \sigma > 0$ 2: for all $t \in [T]$ do do for all $k \in [K]$ define do 3: $N_{k,t-1} = \sum_{s=1}^{t-1} \mathbb{I}\{k = i_s\}, \qquad \hat{\mu}_{k,t-1} = \frac{1}{N_{k,t-1}} \sum_{k=1}^{t-1} \sum_{k=1}^{t$ 4: $\hat{\Delta}_{k,t-1}^2 = \frac{1}{2\sigma^2}\hat{\mu}_{k,t-1}^2$ end for 5: pull $i_t \in \arg \min_{k \in [K]} F(N_{k,t-1}, N_{k,t-1}\hat{\Delta}_{k,t-1}^2, a_k).$ 6: observe $X_t \sim \nu_{i_t}$ 7: 8: **end for** 9: Define $t_{\max} = \max_{t \in [T]} \min_{k \in [K]} F(N_{k,t}, N_{k,t} \hat{\Delta}_{k,t}^2, a_k)$ 10: Return for each $k \in [K]$, $\hat{s}_k = \operatorname{sign}(\hat{\mu}_{k,t_{\max}})$ **Assumption** The index function F(n, x, a): $\mathbb{N} \times \mathbb{R}_+ \times$ decreasing in n and x and $\lim_{n \to +\infty} F(n, ny, a) = +\infty$ for

Examples: we recall the following algorithms

- LSA of [1]: $i_{t+1} = \arg \min_{k \in [K]} N_{k,t} \hat{\Delta}_k^2$. Equivale
- APT of [2]: $i_{t+1} = \arg\min_{k \in [K]} \alpha N_{k,t} \hat{\Delta}_{k,t}^2 + \log N$ $F(n, x) = x + \log(n).$

[1] Andrea Locatelli, Maurilio Gutzeit, and Alexandra Carpentier. An optimal algorithm for the thresholding bandit problem. In International Conference on Machine Learning, pages 1690–1698. PMLR, 2016. [2] Chao Tao, Saúl Blanco, Jian Peng, and Yuan Zhou. Thresholding bandit with optimal aggregate regret. arXiv preprint arXiv:1905.11046, 2019.

Online Sign Identification: Minimization of the Number of Errors in Thresholding Bandits

S	Oracle & lower
ance σ^2	Non-adaptive oracle • If known gaps ($\Delta_k = rac{ \mu_k }{\sigma\sqrt{2}}$), fixed pu
amples, minimize	using Hoeffding's inequality: \mathbb{E} • Oracle: minimize the above upper $a_1\Delta_1^2 \leq \ldots \leq a_K\Delta_K^2$, then
lit problem with a .re:	$\exists k_0 \in [K], \mathbb{E}[L_T] \le \sum_{k < k_0} a_k + \sum_{k \ge k_0} a_k \exp \left(\frac{1}{k}\right)$
eneric proof and errors loss	Remark: This oracle doesn't pull the arm <u>Lower bound:</u> fix $\{\Delta_k, k \in [K]\}$ and $T \ge$ exists $\mu_k \in \{\Delta_k, -\Delta_k\}$ such that
n LSA and APT, we nd: by a factor of	$\mathbb{E}\left[L_T\right] \ge \frac{1}{4} \min_{\sum_k N_k = T} \sum_{k=1}^{\infty} \sum_$
garding adaptivity	A good algorithm pulls all arms: There $\max_{\tilde{\mu}\in\mu_{1},\mu_{2}} \mathbb{E}_{\tilde{\mu}} [L_{T}] \leq c_{1} \min_{\sum_{k} N_{k}=T} \sum_{k} e^{-c_{0}N_{k}}$
	$\max_{\mu \in \{\mu_{1,\epsilon}, \mu_{2,\epsilon}\}} \mathbb{E}_{\mu} \left[\sum_{k=1}^{k_0} \right]$
ull:	Remark: The latter implies that we cannot cation given by the non-adaptive oracle.
	FWT algorithm statem
g bandit	Intuition behind FWT:
$\mathbb{R}_+ \times \mathbb{R}_+^* \to \mathbb{R},$	1 . Write the loss upper bound: $B(N_T)$
4 1	2. Estimate its gradient sequentially: \
$\sum_{s=1}^{t-1} \mathbb{I}\{k=i_s\}X_s$	2. Estimate its gradient sequentially: ∇ 3. Gaps must be estimated $\implies \hat{\nabla}B(A)$
$\sum_{s=1}^{t-1} \mathbb{I}\{k=i_s\}X_s$	2. Estimate its gradient sequentially: ∇ 3. Gaps must be estimated $\implies \hat{\nabla}B(x)$ 4. Frank-Wolfe recommends $F_0(n, x, x)$
$\sum_{s=1}^{t-1} \mathbb{I}\{k=i_s\}X_s$	2. Estimate its gradient sequentially: ∇ 3. Gaps must be estimated $\implies \hat{\nabla}B(x)$ 4. Frank-Wolfe recommends $F_0(n, x, x)$ 5. F_0 is decreasing in x for $x \in (0, 1)$ so
$\sum_{s=1}^{t-1} \mathbb{I}\{k=i_s\}X_s$	2. Estimate its gradient sequentially: 3. Gaps must be estimated $\implies \hat{\nabla}B(x)$ 4. Frank-Wolfe recommends $F_0(n, x, x)$ 5. F_0 is decreasing in x for $x \in (0, 1)$ so $F^{\text{FWT}}(n, x, a_k) = \max\{x, 1\} - \log(x)$
$\sum_{s=1}^{t-1} \mathbb{I}\{k=i_s\}X_s$	2. Estimate its gradient sequentially: 3. Gaps must be estimated $\implies \hat{\nabla}B(x)$ 4. Frank-Wolfe recommends $F_0(n, x, x)$ 5. F_0 is decreasing in x for $x \in (0, 1)$ so $F^{\text{FWT}}(n, x, a_k) = \max\{x, 1\} - \log x$ Deriving LSA & APT:
$\sum_{s=1}^{t-1} \mathbb{I}\{k=i_s\}X_s$	2. Estimate its gradient sequentially: 3. Gaps must be estimated $\implies \hat{\nabla}B(x, x, x, y)$ 4. Frank-Wolfe recommends $F_0(x, x, x, x, y)$ 5. F_0 is decreasing in x for $x \in (0, 1)$ so $F^{\text{FWT}}(x, x, a_k) = \max\{x, 1\} - \log x$ Deriving LSA & APT: • APT: can be derived similarly to FWT bound:
$\sum_{s=1}^{t-1} \mathbb{I}\{k = i_s\} X_s$ $\mathbb{R}^*_+ \to \mathbb{R} \text{ is non-for all } y > 0, a > 0.$	2. Estimate its gradient sequentially: 3. Gaps must be estimated $\implies \hat{\nabla}B(x, x, x)$ 4. Frank-Wolfe recommends $F_0(n, x, x)$ 5. F_0 is decreasing in x for $x \in (0, 1)$ so $F^{\text{FWT}}(n, x, a_k) = \max\{x, 1\} - \log x$ Deriving LSA & APT: • APT: can be derived similarly to FWT bound: $\mathbb{E}[L_T] = \mathbb{E}\left[\sum_{k=1}^{K} a_k \mathbb{I}\{\hat{s}_k \neq s_k\}\right] \leq 1$
$\sum_{s=1}^{t-1} \mathbb{I}\{k = i_s\}X_s$ $\mathbb{R}^*_+ \to \mathbb{R} \text{ is non-for all } y > 0, a > 0.$ Ont to $F(n, x) = x.$ $N_{k,t}$. Equivalent to	2. Estimate its gradient sequentially: 3. Gaps must be estimated $\implies \hat{\nabla}B(x, x, x)$ 4. Frank-Wolfe recommends $F_0(n, x, x)$ 5. F_0 is decreasing in x for $x \in (0, 1)$ so $F^{\text{FWT}}(n, x, a_k) = \max\{x, 1\} - \log x$ Deriving LSA & APT: • APT: can be derived similarly to FWT bound: $\mathbb{E}[L_T] = \mathbb{E}\left[\sum_{k=1}^{K} a_k \mathbb{I}\{\hat{s}_k \neq s_k\}\right] \leq 1$ • LSA: Derived using the same upper ent solution for the instability: Inste- estimate: $\hat{\Delta}_i^{-1} \sim \sqrt{2}$

References

 $\overline{N_{i,t}}.$

Future work: the paper could be complemented by a deeper theoretical analysis of adaptivity.