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Setting
Nature chooses features, parameter (xt)t≥1, θ∗ ∈ Rd, ∀t yt = x⊤

t θ∗ + ϵt.

At step t, the learner:
• observes xt ∈ Rd

• chooses θt−1 ∈ Rd and predicts ŷt = xT
t θt−1

• observes label yt and suffers loss ℓt = (yt − ŷt)
2

Goal: minimize RA
T = LA

T −minθ LT (θ) =
∑T

t=1 ℓ
A
t −minθ LT (θ)

→ In the following, we are interested in two popular algorithms:

Algorithm 1 Online ridge regres-
sion

initialize θ0 ∈ Rd, λ ∈ R+

for t = 1, 2, . . . , T do
Observe input xt

predict ŷt = xT
t θ

r
t−1 ∈ R

observe yt
incur ℓt ∈ R
θrt ∈ argminθ Lt(θ) + λ∥θ∥22

end for

Algorithm 2 Forward regression
initialize θ0 ∈ Rd, λ ∈ R+

for t = 1, 2, . . . , T do
Observe input xt

θft−1 ∈ argminθ Lt−1(θ) + λ∥θ∥22
+(xT

t θ)
2

predict ŷt = xT
t θ

f
t−1 ∈ R

observe yt
incur ℓt ∈ R

end for

Existing analysis and limitations
Consider RT = LT − minθ

(
LT (θ) + λ∥θ∥22

)
. If the observations yt are

adversarial, then it can be shown that:

Rr
T ≤ 4 (Y r)2 d log

(
1 + TX2

λd

)
, Rf

T ≤
(
Y f
)2

d log
(
1 + TX2

λd

)
,

where X = max
1≤t≤T

∥xt∥2, Y f = max
1≤t≤T

|yt|, and Y r = max
1≤t≤T

{
|yt| ,

∣∣x⊤
t θt−1

∣∣} .
Adversarial setting: previous bounds suffer from a rigid regulariza-
tion: constraint: we can write

RA
T ≤ cA

(
Y A)2 d log(1 + TX2

λd

)
+

λ
(
Y A)2 T

λrT (GT (0))
where λrT is the smallest positive eigenvalue of the design matrix.
This forces the choice λ ∼ 1/T to obtain a logarithmic regret.

Stochastic setting: existing bounds suffer from two limitations:

1. Too loose, the adversarial analysis proceeds as follows:

• Rr
T ≤

∑T
t=1

(
x⊤
t θt−1 − yt

)2
x⊤
t G

−1
t xt ≤ 4(Y r)2

∑T
t=1 x

⊤
t G

−1
t xt.

while in a stochastic setting,
(
x⊤
t θt−1 − yt

)2 ∼ ϵ2t ≪ (Y r)2.
• Rf

T ≤
∑T

t=1 y
2
t x

⊤
t G

−1
t xt −

∑T−1
t=1 x⊤

t+1G
−1
t xt+1

(
x⊤
t+1θt

)2
.

where the second term is neglected to conclude.
2. Time dependence: in a stochastic setting, Y A hides a time-

dependence, for all T ≥ 1:

E[Y f] ≥ E
[
max
1≤t≤T

ϵt

]
−X∥θ∗∥2≥ σC

√
2 log(T )−X∥θ∗∥2,

High probability bounds
Definition: we use a new regret definition that is more convenient for
the setting. For an algo A, define R̄A

T = LA
T − LT (θ∗).

Theorem (Regret equivalence) If |GT (0)| > 0, with probability 1− δ, for
all ∥xt∥2≤ X, RA

T = R̄A
T + o

(
log(T )2

)
Theorem (Regret bounds) w.p at least 1− δ,

R̄r
T≤

2dσ2X2

λ log(1 +X2/λ)
log (T ) log

(
T d/2/δ

)
+ o(log(T )2),

R̄f
T≤ 2dσ2 log (T ) log

(
T d/2/δ

)
+ o(log(T )2),

where X = max1≤t≤T ∥xt∥2.

Remarks:
• The range of predictions and observations no longer appears
• A factor 1/λ appears for ridge regression, it is the price for not

assuming bounded predictions
• Both results lift the stringent regularization condition

Tightness of the bounds: a tighter concentration for regularized least
squares [1] was derived concurrently with the writing of this paper:

• They improve the width of the confidence interval from d log(T/δ)
to log(1/δ) + d log log(T ).

• Injecting in our proof gives

RT = O
(
dσ2 log(T ) log(1/δ) + (dσ)2 log(T ) log log(T )

)
• The latter matches Theorem 1 in [2] up to log(1/δ) + d log log(T )

suggesting that the forward algorithm is nearly optimal.

Experiments
We provide experimental evidence supporting the fact that our novel
high probability analysis better reflects the influence of regularization
than results its adversarial counterpart.
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Dependence on λ, axes are logarithmic. Left is ridge regression and right is forward
regression, performances are averaged over 100 realizations.

Comment: once the design matrix Gt(0) becomes non-singular, the 1/λ
virtually disappears from regret bound and is replaced by the smallest
eigenvalue of Gt(0), making the regret significantly more stable.

Application: linear bandits
Setting: linear bandits, reward of action xt at time t is yt = ⟨xt, θ∗⟩+ ϵt,
∥θ∗∥2≤ S. The (pseudo) regret is: RT = maxx∈X

∑T
t=1⟨x− xt, θ∗⟩.

We propose a variant of the OFUL algorithm of [3] using forward.

Algorithm 3 OFULf algorithm
1: Input parameters: λ, δ, S > 0
2: for all t = 1, . . . , T do
3: Define Xt(x) = max{∥x∥2,max1≤s≤t−1∥xs∥2}, Gt−1,x = Gt−1 + xx⊤

4: Define θft (x) = argminθ∈Rd

∑t−1
s=1(ys − ⟨xs, θ⟩)2 + λ∥θ∥22+⟨x, θ⟩2

5: Define xt = argmax
x∈X

⟨x, θft (x)⟩+ ∥x∥G−1
t−1,x

(
√
λ+ ∥x∥2)S

+σ

√
2 log

(
(1+tX2

t (x)/λd)
d/2

δ

)
6: Play xt and observe yt.
7: end for

OFUL requires a strong assumption for the analysis: |⟨xt, θ∗⟩| ≤ 1 . We
present a new analysis for OFUL and OFULf without it:

Theorem (Regret bounds) with probability at least 1− δ, for all T ≥ 1:

Rf
T ≤4

√
Tdlog(λ+TX2/d)

(
σ
√
2log(1/δ)+d log(1+TX2/(λd))+(λ1/2+X)S

)

Rr
T ≤ 4

√
XXX2

Td log(λ+TX2/d)

λλλlog(1+XXX2
/λλλ)

(
S
√
λ+σ

√
2log(1/δ)+d log(1+TX2/(λd))

)

Remarks:
• λ = 1/T incurs linear regret for OFUL OFULf is robust
• OFULf drops the prior knowledge of bounds assumption
• OFULf is significantly more robust in practice

Conclusion
This paper:
◦ Revisits the analysis of online linear regression algorithms in the
stochastic setup, with possibly unbounded observations
◦ Provides novel understanding of online regression algorithms:

1. First ridge regret bound regression without bounded predic-
tions or knowledge observations’ bound

2. Our novel bounds seem to correctly capture the dependence
with regularization

◦ Replaces ridge by forward in linear approximations:
1. Theory: forward enjoys standard regret; drops boundedness

Assumption
2. Practice: forward makes the algorithm robust to regularization

◦ Claims that the forward improvement is expandable: we provide the
analysis for non-stationary linear bandits in the appendix
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