

Stochastic Online Linear Regression: the Forward Algorithm to Replace Ridge

Reda Ouhamma^{*}, Odalric Maillard^{*}, Vianney Perchet[†] * Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France. † Crest, Ensae & Criteo AI Lab

Setting

Nature chooses features, paramet	ter $(x_t)_{t\geq 1}, heta_* \in \mathbb{R}^d$,
At step t , the learner: • observes $x_t \in \mathbb{R}^d$ • chooses $\theta_{t-1} \in \mathbb{R}^d$ and predic • observes label y_t and suffers	ets $\hat{y}_t = x_t^T heta_{t-1}$ loss $\ell_t = (y_t - \hat{y}_t)^2$
Goal: minimize $R_T^{\mathcal{A}} = L_T^{\mathcal{A}} - \min_{\theta} I$	$L_T(\theta) = \sum_{t=1}^T \ell_t^{\mathcal{A}} -$
ightarrow In the following, we are interest	ed in two popular
Algorithm 1 Online ridge regres- sion	Algorithm 2 Forvinitialize $\theta_0 \in \mathbb{R}$
initialize $ heta_0 \in \mathbb{R}^d, \lambda \in \mathbb{R}_+$	for $t = 1, 2,,$
for $t=1,2,\ldots,T$ do	Observe inpu
Observe input x_t	$\theta_{t-1}^f \in \arg \min$
predict $\hat{y}_t = x_t^T \theta_{t-1}^r \in \mathbb{R}$	$\iota - 1 = 0$
observe y_t	······································
incur $\ell_t \in \mathbb{R}$	predict $y_t = x_t$
$\theta_t^r \in \arg\min_{\theta} L_t(\theta) + \lambda \ \theta\ _2^2$	observe y_t
end for	end for $\ell_t \in \mathbb{R}$

Existing analysis and limitations

Consider $\underline{\mathbf{R}}_T = L_T - \min_{\theta} \left(L_T(\theta) + \lambda \|\theta\|_2^2 \right)$. If the observations y_t are adversarial, then it can be shown that:

$\underline{R}_{T}^{r} \leq 4 \left(Y^{r} \right)^{2} d \log \left(1 + \right)^{2} d \log \left(1 +$	$\left(\frac{TX^2}{\lambda d}\right), \mathbf{\underline{R}}_T^f \le \left(Y^f\right)^2 d$
where $X = \max_{1 \le t \le T} \ x_t\ _2$, Y^f	$= \max_{1 \le t \le T} y_t , \text{ and } Y^r = \max_{1 \le t \le T}$

Adversarial setting: previous bounds suffer from a rigid regularization: constraint: we can write

$$R_T^{\mathcal{A}} \le c^{\mathcal{A}} \left(Y^{\mathcal{A}}\right)^2 d \log\left(1 + \frac{TX^2}{\lambda d}\right) +$$

where $\lambda_{r_{T}}$ is the smallest positive eigenvalue of the design matrix. This forces the choice $\lambda \sim 1/T$ to obtain a logarithmic regret.

Stochastic setting: existing bounds suffer from two limitations:

- 1. *Too loose*, the adversarial analysis proceeds as follows:
 - $\mathbf{R}_T^r \leq \sum_{t=1}^T \left(x_t^\top \theta_{t-1} y_t \right)^2 x_t^\top G_t^{-1} x_t \leq 4(Y^r)^2$ while in a stochastic setting, $(x_t^{ op} heta_{t-1} - y_t)^2$ • $\underline{\mathbf{R}}_T^f \leq \sum_{t=1}^T y_t^2 x_t^\top G_t^{-1} x_t - \sum_{t=1}^{T-1} x_{t+1}^\top G_t^{-1} x_{t+1}$ where the second term is neglected to con

2. *Time dependence:* in a stochastic setting, dependence, for all $T \ge 1$:

$$\mathbb{E}[Y^{f}] \ge \mathbb{E}\left[\max_{1 \le t \le T} \epsilon_{t}\right] - X \|\theta_{*}\|_{2} \ge \sigma C \sqrt{2\log(T)} - X \|\theta_{*}\|_{2},$$

[1] Andrea Tirinzoni, Matteo Pirotta, Marcello Restelli, and Alessandro Lazaric. An asymptotically optimal primal-dual incremental algorithm for contextual linear bandits. arXiv preprint arXiv:2010.12247, 2020. [2] Jaouad Mourtada. Exact minimax risk for linear least squares, and the lower tail of sample covariance matrices. arXiv preprint arXiv:1912.10754, 2019. [3] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic bandits. Advances in neural information processing systems, 24:2312–2320, 2011.

,
$$\forall t \ y_t = x_t^\top \theta_* + \epsilon_t.$$

 $\min_{\theta} L_T(\theta)$

algorithms:

ward regression $\mathbb{R}^{d},\lambda\in\mathbb{R}_{+}$ $T \operatorname{do}$ ut x_t $\operatorname{in}_{\theta} L_{t-1}(\theta) + \lambda \|\theta\|_2^2$ $+(x_t^T\theta)^2$ $x_t^T \theta_{t-1}^f \in \mathbb{R}$

$$\log\left(1+\frac{TX^2}{\lambda d}\right),$$

$$\underset{T}{\overset{X}{\left\{\left|y_t\right|,\left|\boldsymbol{x}_t^{\top}\boldsymbol{\theta}_{t-1}\right|\right\}}.$$

 $\lambda \left(Y^{\mathcal{A}} \right)^2 T$ $\lambda_{r_T} \left(G_T(0) \right)$

$$p^{2} \sum_{t=1}^{T} x_{t}^{\top} G_{t}^{-1} x_{t}.$$

 $p^{2} \sim \epsilon_{t}^{2} \ll (Y^{r})^{2}.$
 $p_{1} \left(\boldsymbol{x}_{t+1}^{\top} \boldsymbol{\theta}_{t} \right)^{2}.$
holude.

$$Y^{\mathcal{A}}$$
 hides a time-

High probability bounds

Definition: we use a new regret definition that is more convenient for the setting. For an algo \mathcal{A} , define $\overline{R}_T^{\mathcal{A}} = L_T^{\mathcal{A}} - L_T(\theta_*)$.

Theorem (Regret equivalence) If $|G_T(0)| > 0$, with probability $1 - \delta$, for $R_T^{\mathcal{A}} = \bar{R}_T^{\mathcal{A}} + o\left(\log(T)^2\right)$ all $||x_t||_2 \leq X$,

Theorem (Regret bounds) w.p at least $1 - \delta$,

$$\bar{R}_T^{\mathbf{r}} \leq \frac{2d\sigma^2 X^2}{\lambda \log(1 + X^2/\lambda)} \log\left(T\right) \log\left(T\right)$$

 $\bar{R}_T^{\mathbf{f}} \le 2d\sigma^2 \log\left(T\right) \log\left(T^{d/2}/\delta\right) + o(\log(T)^2),$ where $X = \max_{1 < t < T} \|x_t\|_2$.

Remarks:

- The range of predictions and observations no longer appears
- A factor $1/\lambda$ appears for ridge regression, it is the price for not
- assuming bounded predictions
- Both results lift the stringent regularization condition

Tightness of the bounds: a tighter concentration for regularized least squares [1] was derived concurrently with the writing of this paper: • They improve the width of the confidence interval from $d\log(T/\delta)$

- to $\log(1/\delta) + d \log \log(T)$.
- Injecting in our proof gives

 $R_T = O\left(d\sigma^2 \log(T) \log(1/\delta) + (d\sigma)^2 \log(T) \log\log(T)\right)$

• The latter matches Theorem 1 in [2] up to $\log(1/\delta) + d\log\log(T)$ suggesting that the forward algorithm is nearly optimal.

Experiments

We provide experimental evidence supporting the fact that our novel high probability analysis better reflects the influence of regularization than results its adversarial counterpart.

Dependence on λ , axes are logarithmic. Left is ridge regression and right is forward regression, performances are averaged over 100 realizations.

<u>Comment</u>: once the design matrix $G_t(0)$ becomes non-singular, the $1/\lambda$ virtually disappears from regret bound and is replaced by the smallest eigenvalue of $G_t(0)$, making the regret significantly more stable.

References

 $\log(T^{d/2}/\delta) + o(\log(T)^2),$

Application: linear bandits

Setting: linear bandits, reward of action x_t at time t is $y_t = \langle x_t, \theta_* \rangle + \epsilon_t$, $\|\theta_*\|_2 \leq S$. The (pseudo) regret is: $R_T = \max_{x \in \mathcal{X}} \sum_{t=1}^T \langle x - x_t, \theta_* \rangle$. We propose a variant of the OFUL algorithm of [3] using forward.

Algorithm 3 OFUL^f algorithm

1:	Input parameters: λ, δ, λ
2:	for all $t = 1, \ldots, T$ do
3:	Define $X_t(x) = \max\{\ x\}$
4:	Define $\theta_t^{f}(x) = \arg \min$

5:

Play x_t and observe y_t . 7: **end for**

OFUL requires a strong assumption for the analysis: $|\langle x_t, \theta_* \rangle| \leq 1$. We present a new analysis for OFUL and OFUL^f without it:

Theorem (Regret bounds) with probability at least $1 - \delta$, for all $T \ge 1$:

$$R_T^{\mathbf{f}} \leq 4\sqrt{Td\log(\lambda + TX^2/d)} \left(\sigma_{\Lambda}\right)$$

$$R_T^{\mathbf{r}} \leq 4\sqrt{\frac{\boldsymbol{X}^2 T d \log(\lambda + T X^2/d)}{\boldsymbol{\lambda} \log(1 + \boldsymbol{X}^2/\boldsymbol{\lambda})}}$$

Remarks:

- OFUL^f is significantly more robust in practice

This paper:

• Revisits the analysis of online linear regression algorithms in the stochastic setup, with possibly unbounded observations

- with regularization
- Assumption

Claims that the forward improvement is expandable: we provide the analysis for non-stationary linear bandits in the appendix

S > 0

 $\max\{\|x\|_{2}, \max_{1 \le s \le t-1} \|x_{s}\|_{2}\}, G_{t-1,x} = G_{t-1} + xx^{\top} \\ \min_{\theta \in \mathbb{R}^{d}} \sum_{s=1}^{t-1} (y_{s} - \langle x_{s}, \theta \rangle)^{2} + \lambda \|\theta\|_{2}^{2} + \langle x, \theta \rangle^{2}$ Define $x_t = \arg \max_{x \in \mathcal{X}} \langle x, \theta_t^{f}(x) \rangle + \|x\|_{G_{t-1,x}^{-1}} (\sqrt{\lambda} + \|x\|_2) S$ $+\sigma \sqrt{2\log\left(\frac{(1+tX_t^2(x)/\lambda d)^{d/2}}{\delta}\right)}$

 $\sqrt{2\log(1/\delta) + d\log(1 + TX^2/(\lambda d))} + (\lambda^{1/2} + X)S$

 $\frac{d}{d} \left[S\sqrt{\lambda} + \sigma\sqrt{2\log(1/\delta) + d\log(1 + TX^2/(\lambda d))} \right]$

• $\lambda = 1/T$ incurs linear regret for OFUL OFUL^f is robust OFUL^f drops the prior knowledge of bounds assumption

Conclusion

Provides novel understanding of online regression algorithms: 1. First ridge regret bound regression without bounded predictions or knowledge observations' bound 2. Our novel bounds seem to correctly capture the dependence

Replaces ridge by forward in linear approximations: 1. Theory: forward enjoys standard regret; drops boundedness

2. Practice: forward makes the algorithm robust to regularization