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Ridge

High probability bounds

Definition: we use a new regret definition that is more convenient for
the setting. For an algo A, define R$ = Lot — L (6,).

Nature chooses features, parameter (z;);>1, 0. € RY, Vty; = 2/ 0, + €.

At step t, the learner:
e observes z; € R
e chooses 0;_; € R and predicts §; = 2} 0;_;
e observes label y; and suffers loss ¢; = (y; — §;)*

R# = L7¥ — ming L7 (0) = Zthl ¢ — ming L7(6)

Theorem (Regret equivalence) If |G (0)| > 0, with probability 1 — 4, for
all [|z:]2< X, R7 = Rf + o (log(T)?)

Theorem (Regret bounds) w.p at least 1 — 0,
mr 2do? X?

= Xlog(1 4+ X2/\)

RE< 2do*log (T) log (T%?/5) + o(log(T)?),

where X = mMaxy<¢<T ||37tH2

Goal: minimize

log (T) log (Td/2/5) + o(log(T)?),

— In the following, we are interested in two popular algorithms:

Algorithm 1 Online ridge regres- Algorithm 2 Forward regression
sion initialize 6, € R4, \ € R,
initialize 0, € R, A € R, fort=1,2,...,Tdo
fort=1,2,...,Tdo Observe input x;
Observe input 0/, € argming Ly_1(0) + X||0]|2

Remarks:
e The range of predictions and observations no longer appears

predict j; = 2107 , € R +H(2Th)? e A factor 1/)\ appears for ridge regression, it is the price for not
observe v, o _ i assuming bounded predictions
incur /; € R ptr;edlct gr=zp b, €R e Both results lift the stringent regularization condition
. : 5 observe y;
07 € argming Ly(0) + Al[0]2 incur /; ¢ R Tightness of the bounds: a tighter concentration for regularized least
end for end for squares [1] was derived concurrently with the writing of this paper:

 They improve the width of the confidence interval from dlog(7/9)
T : - - . to log(1/9) + dloglog(T).

Existing analysis and limitations + Injecting in our proof gives

Consider R, = Ly — ming (L7 (0) + A||0]|3). If the observations y, are

adversarial, then it can be shown that:

Ry = O (do”log(T)log(1/8) + (do)* log(T) loglog(T))

R <4 (Yr)2 d log (1 | T/\)fiz) , R§ < (Yf)2 dlog (1 | T/fff),  The latter matches Theorem 1 in [2] up to log(1/d) + dloglog(T)
suggesting that the forward algorithm is nearly optimal.
where X = max [|a¢]l,, Y/ = max |y|,andY” = max {|y, w;rHt_l‘}.

1<t<T 1<t<T 1<t<T

We provide experimental evidence supporting the fact that our novel
high probability analysis better reflects the influence of regularization
than results its adversarial counterpart.

Adversarial setting: previous bounds suffer from a rigid regulariza-
A(YAY T

tion: constraint: we can write
TX2> |
A ) A (Gr(0))

where )\,.. I1s the smallest positive eigenvalue of the design matrix.
This forces the choice )\ ~ 1/T to obtain a Iogar‘ithmic r‘egr‘et. 108 - - 8:(1)241;76482730108395 10° - - 8:(1)?111176482730108395

— 1 : — 1
106 - 10 10° - 10

102 -

R{ < A (YA) dlog <1 :

Stochastic setting: existing bounds suffer from two limitations:

1013

1. Too loose, the adversarial analysis proceeds as follows:
r 2 _ - _
* Ry < 23:1 (x;r‘gt—l - yt) vy Gyt < A(YT) Zthl v, Gy L.
while in a stochastic setting, (x, 6,1 — yt)Q ~er < (Y72 o

f T 2. Tr~—1_. ~T—-1_7 —1 T . 0 10t o102 10 0 1w 102 10
° BT S Zt:1 Yt Ly Gt Lt _ t=1 ','Bt-|—1Gt Lt41 (wt—FlHt) ) #0Observations #0Observations
where the second term is neglected to conclude.

Online Regret
Online Regret
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Dependence on )\, axes are logarithmic. Left is ridge regression and right is forward

2. Time dependence: in a stochastic setting, YA hides a time- regression, performances are averaged over 100 realizations.

dependence, forall 7" > 1. Comment: once the design matrix G;(0) becomes non-singular, the 1/

virtually disappears from regret bound and is replaced by the smallest
eigenvalue of G;(0), making the regret significantly more stable.

3[Y*] > E

— X[|04[2> 0C/210g(T) — X ||6.]|2,

max e€¢
1<t<T

References

Reda Ouhamma’®, Odalric Maillard®, Vianney Perchet!
* Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France. T Crest, Ensae & Criteo Al Lab

Stochastic Online Linear Regression: the Forward Algorithm to Replace

-@ 2 ..L.;UXLH

3* "NEURAL
>%7.. INFORMATION
'of-' PROCESSING

)¢ SYSTEMS

Application: linear bandits

Setting: linear bandits, reward of action x; attime t is y; = (x4, 0.) + €,

104]|2< S. The (pseudo) regret is: Ry = max,cx Zfﬂ(a: — x4, 0,).

We propose a variant of the OFUL algorithm of [3] using forward.

Algorithm 3 OFUL?® algorithm

1: Input parameters: )\, 0,5 > 0

2: forallt=1,...,7T do

3: Define X,(r) = max{||x||2, maxi<s<i—1||Zs||2}s Gi—1.2 = Gi—1 + 2T
4 Define 0f (x) = arg mingepa > (ys — (24, 6))* + A|0]|5+(z, 6)°

5. Define x; = arg inax(a:, 07 (x)) + Ha:HG;ll w(\/x + ||x]|2)S

cX
(14t X7 (x)/Ad)?/2
—I-O'\/2 log ( 5 )

-

6: Play x; and observe y;.
7: end for

OFUL requires a strong assumption for the analysis: |[(x;,0,)| < 1. We
present a new analysis for OFUL and OFUL” without it:

Theorem (Regret bounds) with probability at least1 — ¢, for all T" > 1:

RE <4y/Tdlog(A+TX?/d) (0\/210g(1/5)+d10g(1 +TX2/()\d))+()\1/2+X)S)

. X Tdlog(A\+TX2/d) 5
< 4\/ Mog(1-. X7/ \S\/X+O\/210g(1/6)+dlog(1+TX /()xd)))

Remarks:

e A= 1/T incurs linear regret for OFUL OFUL® is robust

e OFUL! drops the prior knowledge of bounds assumption
e OFUL! is significantly more robust in practice

Conclusion

This paper:

o Revisits the analysis of online linear regression algorithms in the
stochastic setup, with possibly unbounded observations

o Provides novel understanding of online regression algorithms:
1. First ridge regret bound regression without bounded predic-
tions or knowledge observations’ bound
2. Our novel bounds seem to correctly capture the dependence
with regularization

o Replaces ridge by forward in linear approximations:
1. Theory: forward enjoys standard regret; drops boundedness
Assumption
2. Practice: forward makes the algorithm robust to regularization

o Claims that the forward improvement is expandable: we provide the
analysis for non-stationary linear bandits in the appendix
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