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Setting and contributions
Episodic RL

• Bilinear exponential family (BEF) model:
P(s̃ | s, a) = exp

(
ψ(s̃)⊤Mθpφ(s, a)− Zp

s,a(θ
p)
)

P(r | s, a) = exp
(
r B⊤Mθrφ(s, a)− Zr

s,a(θ
r)
)
.

• Minimizes (pseudo-)regret:
R(K) ≜

∑K
k=1

(
V π⋆

θ,1 (s
k
1)− V πt

θ,1(s
k
1)
)
.

Contributions: We investigate episodic RL problem with unknown re-
wards and transition. Our contributions are:

1. A Linear value observation for BEF transitions, generalizing the
Gaussian transition observation of [1]

2. An algorithm with: tractable exploration, tractable planning, and
a Õ(

√
d3H3K) regret upper-bound.

3. A clipping-free algorithm thanks to an improved elliptical lemma.

BEF− RLSVI algorithm
BEF− RLSVI is similar to RLSVI, and is clipping-free.

Algorithm 1 BEF− RLSVI

1: Input: failure rate δ, constants αp, η and (xk)k∈[K] ∈ R+

2: for episode k = 1, 2, . . . do
3: Observe initial state sk1
4: Sample noise ξk ∼ N

(
0, xk(G

p)−1
)

such that

Gp = η
αpA+

∑k−1
τ=1

∑H
h=1(φ(s

τ
h, a

τ
h)

⊤A⊤
i Ajφ(s

τ
h, a

τ
h))i,j∈[d]

5: Perturb reward parameter: θ̃r(k) = θ̂r(k) + ξk
6: Compute (Q̃k

h)h∈[H] via Bellman-backtracking, see Algorithm 2
7: for h = 1, . . . ,H do
8: Pull action akh = argmaxa Q̃

k
h(s

k
h, a)

9: Observe reward r(skh, akh) and state skh+1.
10: end for
11: Update the penalized ML estimators θ̂p(k), θ̂r(k)
12: end for

Unlike optimistic approaches, exploration here is explicit and efficient
as it does not involve a high-dimensional optimization.

Algorithm 2 Bellman Backtracking

1: Input Parameters θ̂p, θ̂r , initialize θ̃ = (θ̃r, θ̂p) and ∀s, VH+1(s) = 0
2: for steps h = H − 1, H − 2, · · · , 0 do
3: Calculate Qθ̃,h(s, a) = Eθ̃r

s,a[r] + ⟨ϕp(s, a),
∫
Vθ̃,h+1(s

′)µp(s′)ds′⟩H.
4: end for

Why is BEF− RLSVI tractable?
Planning:

For an MDP of the BEF, we can write the state-action value function
linearly, at step h:

Q̃π
h(s, a) = Eθ̃r

[r(s, a)] +

〈
ϕp(s, a),

∫
S
µp(s̃)Ṽ h+ 1π(s̃)ds̃

〉
.

Key facts:
• ϕp and ψp are in an RKHS, i.e. infinite dimensional
• Using Random Fourier Transform entails O(pH2K log(HK)) di-

mensional approximations of ϕp and ψp

• Therefore, the planning has a O(pH3K log(HK)) complexity,
pseudo-polynomial in p, H and K , thus tractable.

Maximum likelihood estimation:
There are different methods to approximate ML estimator:

• Integral approximation techniques:
– Simulated annealing and importance sampling
– MCMC techniques for approximating the partition function.
– Optimizing a different objective, the contrastive divergence,

yields a good approximation.

• If the natural parameter and support of the distribution are
bounded, an ϵ-approximation can be derived in O(poly(k/ϵ))

• Score matching: avoids approximating the partition function.
Under certain conditions, the estimation can be solved in O(d3)

Regret bound
Theorem (regret bound): Let Gs,a ≜ (φ(s, a)⊤A⊤

i Ajφ(s, a))i,j∈[d] and
A ≜ (tr(AiA

⊤
j ))i,j∈[d]. Under regularity of the Hessian and assuming

1. max{∥θr∥A, ∥θp∥A} ≤ BA, ∥A−1Gs,a∥≤ Bφ,A and Eθr

[r(s, a)] ∈ [0, 1]

2. The noise ξk ∼ N (0, xk(G
p)−1) satisfies xk ≳ dH2

then for all δ ∈ (0, 1], with probability at least 1− 7δ,

R(K) = O(
√
d3H3K).

Tightness of regret upper-bound:

• A lower bound for episodic RL with continuous state-action
spaces is still missing.

• For tabular RL, [2] proves a lower bound of order Ω(
√
H3SAK)

• A tabular MDP is also a BEF model with d = S2 ×A

• BEF− RLSVI’s yields R(K) = O(
√

(S2A)3H3K), tight in H and K.

Interesting proof bits
Optimism: Key reasons for choosing RLSVI-type algorithms:

• Perturbing the reward estimation guarantees optimism with a
constant probability

• A constant probability of optimism is enough to control the value
function approximation error

Transportation: Using transportation inequalities instead of the
simulation lemma (c.f. Lemma 1 in [1]) reduces a

√
H regret factor

Elliptical lemma:

• Leveraging the boundedness of the true value function enables
using an improved elliptical lemma (

√
H less than [3])

• The norm of features can only be large O(d) times, thus, we can
omit clipping and reduce the regret by

√
d compared to [4].

Approximate planning:

• To guarantee a tractable planning, we approximate the transition
with (1/

√
H2K)-error. Using mis-specification style analysis, we

show that the approximation doesn’t hinder the regret bound.

• Using a Linear-RL algorithm directly on top of the approximation
would lead to a linear regret.

Conclusion
◦ For episodic RL with BEF transitions and rewards:

1. We propose BEF− RLSVI that achieves a O(
√
d3H3K) regret

2. We show that tractable planning and exploration are possible

3. We give the second example of continuous linear MDPs in litera-
ture, although both are infinite dimensional

◦ For linear RL style analyses: The occurrences of values outside
the plausible range, e.g. V̂ ̸∈ [0, H], are finite
◦ Future work:

1. The paper could be complemented by experimental evaluations
on relevant tasks.

2. The tractability of planning can be extended to any shift invariant
kernel : this can lead to interesting generalizations.
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