

Setting and contributions

Episodic RL

• Bilinear exponential family (BEF) model:

$$\mathbb{P}(\tilde{s} \mid s, a) = \exp\left(\psi(\tilde{s})^{\top} M_{\theta^{p}} \varphi(s, a) - Z\right)$$
$$\mathbb{P}(r \mid s, a) = \exp\left(r B^{\top} M_{\theta^{r}} \varphi(s, a) - Z_{s}^{r}\right)$$

Minimizes (pseudo-)regret:

$$\mathcal{R}(K) \triangleq \sum_{k=1}^{K} \left(V_{\theta,1}^{\pi^{\star}}(s_1^k) - V_{\theta,1}^{\pi^{t}}(s_1^k) \right)$$

Contributions: We investigate episodic RL problem w wards and transition. Our contributions are:

- 1. A Linear value observation for BEF transitions, Gaussian transition observation of [1]
- 2. An algorithm with: tractable exploration, tractal a $\mathcal{O}(\sqrt{d^3H^3K})$ regret upper-bound.
- 3. A clipping-free algorithm thanks to an improved

BEF – RLSVI algorithm

BEF – RLSVI is similar to RLSVI, and is clipping-free.

Algorithm 1 BEF - RLSVI

- 1: **Input:** failure rate δ , constants α^p , η and $(x_k)_{k \in [K]}$
- 2: **for** episode k = 1, 2, ... **do**
- Observe initial state s_1^k 3:
- Sample noise $\xi_k \sim \mathcal{N}\left(0, x_k(G^p)^{-1}\right)$ such that 4:

$$G^{p} = \frac{\eta}{\alpha^{p}} \mathbb{A} + \sum_{\tau=1}^{k-1} \sum_{h=1}^{H} (\varphi(s_{h}^{\tau}, a_{h}^{\tau})^{\top} A_{i}^{\top} A_{j} \varphi$$

Perturb reward parameter: $\tilde{\theta}^r(k) = \hat{\theta}^r(k) + \xi_k$ 5:

- Compute $(\tilde{Q}_{h}^{k})_{h\in[H]}$ via Bellman-backtracking, se 6:
- for $h = 1, \ldots, H$ do 7:
- Pull action $a_h^k = \arg \max_a \tilde{Q}_h^k(s_h^k, a)$ 8:
- Observe reward $r(s_h^k, a_h^k)$ and state s_{h+1}^k . 9:

end for

Update the penalized ML estimators $\hat{\theta}^{p}(k), \hat{\theta}^{r}(k)$ 11: 12: end for

Unlike optimistic approaches, exploration here is exp as it does not involve a high-dimensional optimization

Algorithm 2 Bellman Backtracking

1: Input Parameters $\hat{\theta}^p, \hat{\theta}^r$, initialize $\tilde{\theta} = (\tilde{\theta}^r, \hat{\theta}^p)$ and

- 2: for steps $h = H 1, H 2, \dots, 0$ do
- Calculate $Q_{\tilde{\theta} h}(s,a) = \mathbb{E}_{s,a}^{\tilde{\theta}^r}[r] + \langle \phi^p(s,a), \int V_{\tilde{\theta},h+1}(s,a) \rangle = \mathbb{E}_{s,a}^{\tilde{\theta}^r}[r] + \langle \phi^p(s,a), \int V_{\tilde{\theta},h+1}(s,a) \rangle$ 3:
- 4: **end for**

[1] Tongzheng Ren, Tianjun Zhang, Csaba Szepesvári, and Bo Dai. A free lunch from the noise: Provable and practical exploration for representation learning. In Uncertainty in Artificial Intelligence. PMLR, 2022. [2] Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann, and Michal Valko. Episodic reinforcement learning in finite mdps: Minimax lower bounds revisited. In Algorithmic Learning Theory. PMLR, 2021. [3] Sayak Ray Chowdhury, Aditya Gopalan, and Odalric-Ambrym Maillard. Reinforcement learning in parametric mdps with exponential families. In AISTATS. PMLR, 2021. [4] Andrea Zanette, David Brandfonbrener, Emma Brunskill, Matteo Pirotta, and Alessandro Lazaric. Frequentist regret bounds for randomized least-squares value iteration. In AISTATS. PMLR, 2020.

Bilinear Exponential Family of MDPs: Frequentist Regret Bound with Tractable Exploration & Planning

Reda Ouhamma^{*}, Odalric Maillard^{*}, Debabrota Basu^{*} * Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France.

5	Why is BEF - RLSVI
	Planning:
$(\theta^p))$	For an MDP of the BEF, we can write th linearly, at step <i>h</i> :
$_{a}(\theta^{r})).$	$\tilde{Q}_h^{\pi}(s,a) = \mathbb{E}^{\tilde{\theta}^r}[r(s,a)] + \left\langle \phi^p(s,a), \right\rangle$
) . with unknown re- generalizing the	 Key facts: φ^p and ψ^p are in an RKHS, <i>i.e.</i> infinit Using Random Fourier Transform mensional approximations of φ^p and Therefore, the planning has a generation pseudo-polynomial in p, H and K, the pseudo-polynomial in pseudo-polynomial in p, H and K, the pseudo-polynomial in pseudo-polyn
ble planning, and	Maximum likelihood estimation: There are different methods to approxim
elliptical lemma.	 Integral approximation techniques Simulated annealing and impo MCMC techniques for approxi Optimizing a different objective yields a good approximation.
	• If the natural parameter and supposed bounded, an ϵ -approximation can be
$\in \mathbb{R}^+$	 Score matching: avoids approxim Under certain conditions, the estim
	Regret bou
$(s_h^{\tau}, a_h^{\tau}))_{i,j \in [d]}$	$\frac{\text{Theorem (regret bound):}}{\mathbb{A} \triangleq (\operatorname{tr}(A_i A_j^{\top}))_{i,j \in [d]}. \text{ Under regularity of }}$
ee Algorithm 2	1. $\max\{\ \theta^r\ _{\mathbb{A}}, \ \theta^p\ _{\mathbb{A}}\} \leq B_{\mathbb{A}}, \ \mathbb{A}^{-1}G_{s,a}\ \leq$
	2. The noise $\xi_k \sim \mathcal{N}(0, x_k(G^p)^{-1})$ satisfie
	then for all $\delta \in (0,1]$, with probability at le
	$\mathcal{R}(K) = \mathcal{O}(\sqrt{d^3})$
olicit and efficient	Tightness of regret upper-bound:
۱	 A lower bound for episodic RL v spaces is still missing.
$\forall s, V_{H+1}(s) = 0$	• For tabular RL, [2] proves a lower b
$(s')\mu^p(s')ds' angle_{\mathcal{H}}.$	• A tabular MDP is also a BEF model
	• BEF – RLSVI's yields $R(K) = O(\sqrt{S})$

References

tractable?

ne state-action value function

 $\mu^p(\tilde{s})\tilde{V}h + 1^{\pi}(\tilde{s})d\tilde{s}$.

te dimensional

entails $\mathcal{O}(pH^2K\log(HK))$ did ψ^p

 $\mathcal{O}(pH^3K\log(HK))$ complexity, hus tractable.

nate ML estimator:

ortance sampling

imating the partition function. e, the contrastive divergence,

port of the distribution are be derived in $O(\text{poly}(k/\epsilon))$

nating the partition function. nation can be solved in $O(d^3)$

ind

 $(arphi(s,a)^ op A_i^ op A_j arphi(s,a))_{i,j\in [d]}$ and |^t the Hessian and assuming

 $B_{\varphi,\mathbb{A}}$ and $\mathbb{E}^{\theta^r}[r(s,a)] \in [0,1]$

es $x_k \gtrsim dH^2$

least $1-7\delta$,

 $\overline{H^3K}$).

with continuous state-action

bound of order $\Omega(\sqrt{H^3SAK})$

with $d = S^2 \times A$

 $(S^2A)^3H^3K$, tight in H and K.

Interesting proof bits

- constant probability
- function approximation error

Transportation: Using transportation inequalities instead of the **simulation** lemma (c.f. Lemma 1 in [1]) reduces a \sqrt{H} regret factor **Elliptical lemma:**

Approximate planning:

- would lead to a linear regret.

- For episodic RL with BEF transitions and rewards:

 - ture, although both are infinite dimensional

• For linear RL style analyses: The occurrences of values outside the plausible range, e.g. $V \notin [0, H]$, are finite • Future work:

- on relevant tasks.

Acknowledgements: The authors acknowledge the funding of the French National Research Agency, the French Ministry of Higher Education and Research, Inria, the MEL and the I-Site ULNE regarding project R-PILOTE-19-004-APPRENF

Optimism: Key reasons for choosing RLSVI-type algorithms:

• Perturbing the reward estimation guarantees optimism with a

• A constant probability of optimism is enough to control the value

• Leveraging the boundedness of the true value function enables using an improved elliptical lemma (\sqrt{H} less than [3])

• The norm of features can only be large $\mathcal{O}(d)$ times, thus, we can omit clipping and reduce the regret by \sqrt{d} compared to [4].

 To guarantee a tractable planning, we approximate the transition with $(1/\sqrt{H^2K})$ -error. Using mis-specification style analysis, we show that the approximation doesn't hinder the regret bound.

Using a Linear-RL algorithm directly on top of the approximation

Conclusion

1. We propose BEF – RLSVI that achieves a $\mathcal{O}(\sqrt{d^3H^3K})$ regret

2. We show that tractable planning and exploration are possible

3. We give the second example of continuous linear MDPs in litera-

1. The paper could be complemented by experimental evaluations

2. The tractability of planning can be extended to any shift invariant kernel: this can lead to interesting generalizations.