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Interesting proof bits

Why is BEF — RLSVI tractable?

>

Episodic RL
e Bilinear exponential family (BEF) model:

P(s|s,a) =exp (¢(§)TM9pgo(3, a) — Zfaa(ﬁp))
P(r | s,a) = exp (r B Mgr(s,a) — Z7 ,(07)) .

e Minimizes (pseudo-)regret:
R(K) 2 53, (Vi (sh) = Vi (sh))

Contributions: We investigate episodic RL problem with unknown re-
wards and transition. Our contributions are:

1. A Linear value observation for BEF transitions, generalizing the
Gaussian transition observation of [1]

2. Analgorithm with: tractable exploration, tractable planning, and
a O(Vd3H3K) regret upper-bound.

3. A clipping-free algorithm thanks to an improved elliptical lemma.

BEF — RLSVI algorithm

BEF — RLSVI is similar to RLSVI, and is clipping-free.

Planning:

For an MDP of the BEF, we can write the state-action value function
linearly, at step h:
T <¢p(8,a),/ WP (3)Vh + 1”(§)d§>.
S
Key facts:

Qh(s,a) =
e ¢P and y? are in an RKHS, i.e. infinite dimensional
e Using Random Fourier Transform entails O(pH*K log(HK)) di-
mensional approximations of ¢ and y?
e Therefore, the planning has a O(pH’K log(HK)) complexity,
pseudo-polynomial in p, H and K, thus tractable.

~

2 [r(s, @)

Maximum likelihood estimation:

Algorithm 1 BEF — RLSVI

1: Input: failure rate ¢, constants o”,n and (z)rex) € RT
2: forepisode k=1,2,...do

3:  Observe initial state s%

4:  Sample noise &, ~ N (0, 2, (GP)~

H T T T T
GP = LA+ TS (o(sh,al) T AT Ajo(sT, al))sjea

Perturb reward parameter: 0" (k) = 0" (k) + &
Compute (Qh)hE m) via Bellman-backtracking, see Algorithm 2
forh=1,... H do
Pull actiOn a’fL — argmax, Q% (s¥, a)
Observe reward r(sf,aj) and state s} _ ;.
10: end for
11:  Update the penalized ML estimators 67(k), 6" (k)
12: end for

') such that

Unlike optimistic approaches, exploration here is explicit and efficient
as It does not involve a high-dimensional optimization.

Algorithm 2 Bellman Backtracking

. Input Parameters 67, 0", initialize = (67,0?) and Vs, Viy.1(s) = 0
. forstepsh=H —-1,H—-2,---,0do

ﬂg a[ ] + <¢p(87 a)7 f Vé,h-|-1(8/)

P (s")ds") 3

1
2
3: Calculate Q)5 ,(s,a) =
4: end for

There are different methods to approximate ML estimator:

e Integral approximation techniques:

- Simulated annealing and importance sampling

- MCMC techniques for approximating the partition function.

- Optimizing a different objective, the contrastive divergence,
yields a good approximation.

e If the natural parameter and support of the distribution are
bounded, an e-approximation can be derived in O(poly(k/e))

e Score matching: avoids approximating the partition function.
Under certain conditions, the estimation can be solved in O(d*)

Regret bound

Theorem (regret bound): Let G,, = (¢(s,a)' A Ajp(s,a)); jerq and
A= (tr(AiAjT))i,je[d]. Under regularity of the Hessian and assuming

L max{||0"]|a, [67[la} < Ba, [[A7'Gsall< By and E [r(s,a)] € [0,1]

2. The noise &, ~ N (0, 2, (GP)~1) satisfies z, > dH?

then for all § € (0, 1], with probability at least 1 — 74,

R(K) = OWdH3K).

Tightness of regret upper-bound:

e A lower bound for episodic RL with continuous state-action
spaces Is still missing.

 For tabular RL, [2] proves a lower bound of order Q(vV H3SAK)
e Atabular MDP is also a BEF model with d = 5% x A

BEF — RLSVI'S

S2AH3K), tightin H and K.

Optimism: Key reasons for choosing RLSVI-type algorithms:

e Perturbing the reward estimation guarantees optimism with a
constant probability

A constant probability of optimism is enough to control the value
function approximation error

Transportation: Using transportation inequalities instead of the

simulation lemma (c.f. Lemma 1 in [1]) reduces a v H regret factor
Elliptical lemma:

e Leveraging the boundedness of the true value function enables
using an improved elliptical lemma (v H less than [3])

« The norm of features can only be large O(d) times, thus, we can
omit clipping and reduce the regret by v/d compared to [4].

Approximate planning:

e To guarantee a tractable planning, we approximate the transition
with (1/v H2K)-error. Using mis-specification style analysis, we
show that the approximation doesn’t hinder the regret bound.

e Using a Linear-RL algorithm directly on top of the approximation
would lead to a linear regret.

o For episodic RL with BEF transitions and rewards:

1. We propose BEF — RLSVI that achieves a O(Vd3H3K) regret
2. We show that tractable planning and exploration are possible

3. We give the second example of continuous linear MDPs in litera-
ture, although both are infinite dimensional

o For linear RL style analyses: The occurrences of values outside
the plausible range, e.g. V ¢ |0, H], are finite

o Future work:

1. The paper could be complemented by experimental evaluations
on relevant tasks.

2. The tractability of planning can be extended to any shift invariant
kernel: this can lead to interesting generalizations.
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