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Abstract
We study the problem of episodic reinforcement learning in continuous state-action spaces with unknown rewards and1

transitions. Specifically, we consider the setting where the rewards and transitions are modeled using parametric bilinear2

exponential families. We propose an algorithm, BEF-RLSVI, that a) uses penalized maximum likelihood estimators to3

learn the unknown parameters, b) injects a calibrated Gaussian noise in the parameter of rewards to ensure exploration,4

and c) leverages linearity of the exponential family with respect to an underlying RKHS to perform tractable planning.5

We further provide a frequentist regret analysis of BEF-RLSVI that yields an upper bound of Õ(
√
d3H3K), where d is6

the dimension of the parameters, H is the episode length, and K is the number of episodes. Our analysis improves the7

existing bounds for the bilinear exponential family of MDPs by
√
H and removes the handcrafted clipping deployed in8

existing RLSVI-type algorithms. Our regret bound is order-optimal with respect to H and K.9

Keywords: Episodic RL, Planning, Bilinear exponential family10

1. Introduction11

Reinforcement Learning (RL) is a well-studied and popular framework for sequential decision making, where an agent12

aims to compute a policy that allows her to maximize the accumulated reward over a horizon by interacting with an13

unknown environment (Sutton and Barto, 2018).14

Episodic RL. In this paper, we consider the episodic finite-horizon MDP formulation of RL, in short Episodic RL Osband
et al. (2013); Azar et al. (2017); Dann et al. (2017). Episodic RL is a tuple M = ⟨S,A,P, r,K,H⟩, where the state
(resp. action) space S (resp. A) might be continuous. The agent interacts with the environment in K episodes consisting
of H steps. Episode k starts by observing state sk1 . Then, for t = 1, . . . H , the agent draws action akt from a (possibly
time-dependent) policy πt(skt ), observes the reward r(skt , a

k
t ) ∈ [0, 1], and transits to a state skt+1 ∼ P(. | skt , akt )

following the transition function P. The performance of a policy π is measured by the total expected reward V π
1 starting

from a state s ∈ S, the value function and the state-action value functions at step h ∈ [H] are defined as

V π
h (s)

def
= E

[
H∑
t=h

r(st, at) | sh = s

]
, and Qπ

h(s, a)
def
= E

[
H∑
t=h

r(st, at) | sh = s, ah = a

]
.

Here, computing the policy leading to maximization of cumulative reward requires the agent to strategically control
the actions in order to learn the transition functions and reward functions as precisely as required. This tension between
learning the unknown environment and reward maximization is quantified as regret: the typical performance measure
of an episodic RL algorithm. Regret is defined as the difference between the expected cumulative reward or value
collected by the optimal agent that knows the environment and the expected cumulative reward or value obtained by
an agent that has to learn about the unknown environment. Formally, the regret over K episodes is

R(K) ≜
K∑

k=1

(
V π⋆

1 (sk1)− V πt
1 (sk1)

)
.

Key Challenges. The first key challenge in episodic RL is to tackle the exploration–exploitation trade-off. This15

is traditionally addressed with the optimism principle that either carefully crafts optimistic upper bounds on the16

value (or state-action value) functions Azar et al. (2017), or maintains a posterior on the parameters to perform17
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posterior sampling Osband et al. (2013), or perturbs the value (or state-action value) function estimates with calibrated18

noise Osband et al. (2016). Though the first two approaches induce theoretically optimal exploration, they might not19

yield tractable algorithms for large/continuous state-action spaces as they either involve optimization in the optimistic20

set or maintaining a high-dimensional posterior. Thus, we focus on extending the third approach of Randomized21

Least-Square Value Iteration (RLSVI) framework, and inject noise only in rewards to perform tractable exploration.22

The second challenge, which emerges for continuous state-action spaces, is to learn a parametric functional approxima-23

tion of either the value function or the rewards and transitions in order to perform planning and exploration. Different24

functional representations (or models), such as linear Jin et al. (2020), bilinear Du et al. (2021), and bilinear exponential25

families Chowdhury et al. (2021), are studied in literature to develop optimal algorithms for episodic RL with continuous26

state-action spaces. Since the linear assumption is restrictive in real-life -where non-linear structures are abundant-,27

generalized representations have obtained more attention recently Chowdhury et al. (2021); Li et al. (2021); Du et al.28

(2021); Foster et al. (2021). The bilinear exponential family model is of special interest as it is expressive enough to29

represent tabular MDPs (discrete state-action), factored MDPs Kearns and Koller (1999), linear MDPs Jin et al. (2020),30

linearly controlled dynamical systems (such as Linear Quadratic Regulators Abbasi-Yadkori and Szepesvári (2011)) as31

special cases Chowdhury et al. (2021). Thus, in this paper, we study the bilinear exponential family of MDPs, i.e. the32

episodic RL setting where the rewards and transition functions can be modelled with bilinear exponential families.33

The third challenge is to perform tractable planning1 given the perturbation for exploration and the model class.34

Existing work (Osband and Van Roy, 2014; Chowdhury et al., 2021) assumes an oracle to perform planning and yield35

policies that aren’t explicit. The main difficulty in such planning approaches is that dynamic programming requires36

calculating
∫
P(s′ | s, a)Vh(s) for all (s, a) pairs. This is not trivial unless the transition is assumed to be linear and37

decouples s′ from (s, a), which is not known to hold except for tabular MDPs. Much ink has been spilled about this38

challenge recently, e.g. Du et al. (2019) asks when misspecified linear representations are enough for a polynomial39

sample complexity in several settings. Shariff and Szepesvári (2020); Lattimore et al. (2020); Van Roy and Dong (2019)40

provide positive answers for specific linear settings. In this paper, we aim to address this issue by designing a tractable41

planner for the bilinear exponential family representation.42

In this paper, we aim to address the following question that encompasses the three challenges:43

Can we design an algorithm that performs tractable exploration and planning for bilinear exponential family of44

MDPs yielding a near-optimal frequentist regret bound?45

Our Contributions. Our contributions to this question are three-fold.46

1. Formalism: We assume that rewards and transitions are unknown, whereas existing efforts on the bilinear exponential47

family of MDPs assume knowledge of rewards. This makes the addressed problem harder, practical, and more general.48

We also observe that though the transition model can represent non-linear dynamics, it implies a linear behavior (see49

Section 2) in a Reproducible Kernel Hilbert Space (RKHS). This observation contributes to the tractability of planning.50

2. Algorithm: We propose an algorithm BEF-RLSVI that extends the RLSVI framework to bilinear exponential51

families (see Section 3). BEF-RLSVI a) injects calibrated Gaussian noise in the rewards to perform exploration, b)52

leverages the linearity of the transition model with respect to an underlying RKHS to perform tractable planning and c)53

uses penalized maximum likelihood estimators to learn the parameters corresponding to rewards and transitions (see54

Section 4). To the best of our knowledge, BEF-RLSVI is the first algorithm for the bilinear exponential family of55

MDPs with tractable exploration and planning under unknown rewards and transitions.56

3. Analysis: We carefully develop an analysis of BEF-RLSVI that yields Õ(
√
d3H3K) regret which improves the57

existing regret bound for bilinear exponential family of MDPs with known reward by a factor of
√
H (Section 3.2). Our58

analysis (Section 5) builds on existing analyses of RLSVI-type algorithms Osband et al. (2016), but contrary to them,59

we remove the need to handcraft a clipping of the value functions Zanette et al. (2020). We also do not need to assume60

anti-concentration bounds as we can explicitly control it by the injected noise. This was not done previously except for61

the linear MDPs. We illustrate this comparison in Table 1. We highlight three technical tools that we used to improve the62

previous analyses: 1) Using transportation inequalities instead of the simulation lemma reduces a
√
H factor compared63

to Ren et al. (2021), 2) Leveraging the observation that true value functions are bounded enables using an improved64

elliptical lemma (compared to Chowdhury et al. (2021)), and 3) Noticing that the norm of features can only be large for a65

finite amount of time allows us to forgo clipping and reduce a
√
d factor from the regret compared to Zanette et al. (2020).66

1. By tractable planning, we mean having a planner with (pseudo-)polynomial complexity in the problem parameters, i.e. dimension
of parameters, dimension of features, horizon, and number of episodes.
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Table 1: A comparison of RL Algorithms for continuous state-actions with functional representations.

Algo Regret Tractable Tractable Free of Model, assumptions
exploration planning clipping

Thompson sampling
√
d2H3K ✗ ✓ N.A Gaussian P

Ren et al. (2021) (Bayesian) Known rewards

LSVI-PHE
√
d3H4K ✓ ✓ ✗ Generalized V approx

Ishfaq et al. (2021) (Freq.) Tabular, anti-concentration

OPT-RLSVI
√
d4H5K ✓ ✓ ✗ Linear V

Zanette et al. (2020) (Freq.)

EXP-UCRL
√
d2H4K ✗ ✗ N.A Bilinear Exp family

Chowdhury et al. (2021) (Freq.) known rewards

BEF-RLSVI
√
d3H3K ✓ ✓ ✓ Bilinear Exp family

This work (Freq.)

2. Bilinear exponential family of MDPs67

In this section, we introduce the bilinear exponential family model coined in Chowdhury et al. (2021) and extend it to68

parametric rewards. Then, we state a novel observation about linearity of this representation.69

Bilinear exponential family model. We consider both transition and reward kernels to be unknown and modeled with
bilinear exponential families. Specifically,

P (s̃ | s, a) = exp
(
ψ(s̃)⊤Mθpφ(s, a)− Zp

s,a(θ
p)
)
, (1)

P (r | s, a) = exp
(
r B⊤Mθrφ(s, a)− Zr

s,a(θ
r)
)
, (2)

where φ ∈ (Rq
+)

S×A and ψ ∈ (Rp
+)

S are known functions, and B ∈ Rp is a known scaling vector. The unknown

reward and transition parameters are θp, θr ∈ Rd. Mθ·
def
=
∑d

i=1 θ
·
iAi, where Ai is a known p × q matrix for each

i. Finally, Z denotes the log partition function: Zp
s,a(θ

p)
def
= log

∫
S exp

(
ψ(s̃)⊤Mθpφ(s, a)

)
ds̃, and Zr is defined

similarly. We denote V π
θp,θr,h and Qπ

θp,θr,h, the value and state-action value function respectively, for policy π in the
MDP parameterized by (θp, θr) at time h. A policy π⋆ is optimal if for all s ∈ S, V π⋆

θ,h(s) = max
π∈Π

V π
θ,h(s). A learning

algorithm minimizes the (pseudo-)regret defined as:

R(K) ≜
K∑

k=1

(
V π⋆

θ,1 (s
k
1)− V πt

θ,1(s
k
1)
)
. (3)

Linearity of transitions. Now, we state an observation about the bilinear exponential family and discuss how it helps
with the challenge of planning in episodic RL. Specifically, the popular assumption of linearity of the transition kernel
is a direct consequence of our model. Indeed,

2ψ (s′)
⊤
Mθpφ(s, a) = −∥(ψ(s′)−Mθpφ(s, a)∥2 + ∥ψ(s′)∥2 + ∥Mθpφ(s, a)∥2.

The quadratic term resembles the Radial Basis Function (RBF). More precisely, for an RBF kernel with covariance
Σ=Ip and k(x, y)def= exp

(
−∥x− y∥2/2

)
, we find

P (s′ | s, a) = ⟨ϕp(s, a), µp(s′)⟩H (4)

where H is the RKHS associated with the kernel, µp(s′) = (2π)−p/2 k (ψ(s′), .) exp
(
∥ψ (s′) ∥2/2

)
, and ϕp(s, a) =70

k
(
M⊤

θpφ(s, a), .
)
exp

(
∥Mθpφ(s, a)∥2/2− Zs,a(θ

p)
)
. Equation (4) shows that s′ is decoupled from (s, a).71

Remark 1 Ren et al. (2021) is the only other work providing an example of linear transitions in continuous state-action72

spaces. It considers Gaussian transitions with an unknown mean (f⋆(s, a)) and known variance (σ2). Actually, linear73

f⋆ is a special case of our model with ψ(s′) = (s′, ∥s′∥2) and Mθφ(s, a) = (fθ(s, a)/σ
2,−1/σ2).74
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Importance of linearity. To understand the planning challenge in RL, recall the Bellman equation:

Qπ
h(s, a) = r(s, a) +

∫
s̃∈S

P (s′ | s, a)V π
h+1(s̃)ds̃,

we must approximate the integral at the R.H.S for all (s, a) ∈ S×A. For a tabular MDP, we need to evaluate (Qπ
h)h∈[H],

i.e. approximate |S| × |A| ×H integrals per episode, which is very expensive. However, if Equation (4) holds, then

Qπ
θ,h(s, a) = r(s, a) +

〈
ϕp(s, a),

∫
S
µp(s̃)V π

θ,h+1(s̃)ds̃

〉
. (5)

When ϕp, µp ∈ Rτ , we can obtain Qθp,θr,h by computing τ integrals. For our model, although ϕp and µp are infinite75

dimensional, we show in Section 4 (§ planning) that the planning is still computationally tractable.76

3. BEF-RLSVI: algorithm design and frequentist regret bound77

In this section, we formally introduce the Bilinear Exponential Family Randomized Least-Squares Value Iteration78

(BEF-RLSVI) algorithm. Then, we present a high probability upper-bound on its regret.79

3.1 BEF-RLSVI: algorithm design80

BEF-RLSVI is based on RLSVI (Osband et al., 2016) with the distinction that we only perturb the reward parameters81

and not all the parameters of the value function. RLSVI algorithms are reminiscent of Thompson Sampling, yet more82

tractable with better control over the probability to be optimistic.83

Algorithm 1 BEF-RLSVI
1: Input: failure rate δ, constants αp, η and (xk)k∈[K] ∈ R+

2: for episode k = 1, 2, . . . do
3: Observe initial state sk1
4: Sample noise ξk ∼ N

(
0, xk(Ḡ

p
k)

−1
)

such that

Ḡp
k = η

αpA+
∑k−1

τ=1

∑H
h=1(φ(s

τ
h, a

τ
h)

⊤A⊤
i Ajφ(s

τ
h, a

τ
h))i,j∈[d]

5: Perturb reward parameter: θ̃r(k) = θ̂r(k) + ξk
6: Compute (Qk

θ̂p,θ̃r,h
)h∈[H] via Bellman-backtracking, see Algorithm 2

7: for h = 1, . . . ,H do
8: Pull action akh = argmaxaQθ̂p,θ̃r,h(s

k
h, a)

9: Observe reward r(skh, a
k
h) and state skh+1.

10: end for
11: Update the penalized ML estimators θ̂p(k), θ̂r(k), see Equation (6) and Equation (8)
12: end for

Algorithm 1 performs exploration by a Gaussian perturbation of the reward parameter (Line 4). Unlike optimistic84

approaches, this method is explicit and more efficient since it does not involve a high-dimensional optimization.85

Algorithm 2 Bellman Backtracking

1: Input Parameters θ̂p, θ̃r, initialize θ̃ = (θ̃r, θ̂p) and ∀s, VH+1(s) = 0
2: for steps h = H − 1, H − 2, · · · , 0 do
3: Calculate Qθ̃,h(s, a) = Eθ̃r

s,a[r] + ⟨ϕp(s, a),
∫
Vθ̃,h+1(s

′)µp(s′)ds′⟩H.
4: end for

We can approximate Line 3 of Algorithm 2 with O(pH3K log(HK)) complexity without compromising regret86

guarantees (cf. § planning, Section 4). Therefore, Algorithm 2 provides tractable planning.87
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3.2 BEF-RLSVI: regret upper-bound88

We state the standard smoothness assumptions on the model (Chowdhury et al., 2021; Jun et al., 2017; Lu et al., 2021).89

Assumption 2 There exist constants αp, αr, βp, βr > 0, such that the representation model satisfies:

∀(s, a) ∈ S ×A,∀θ, x ∈ Rd αp ≤ x⊤Cθ
s,a[ψ]x ≤ βp

∀(s, a) ∈ S ×A,∀θ, x ∈ Rd αr ≤ Varθs,a(r) x⊤B⊤Bx ≤ βr

where Cθ
s,a [ψ (s′)] ≜ Es′∼Pθ|s,a

[
ψ (s′)ψ (s′)

⊤
]
− Es′∼Pθ|s,a [ψ (s′)]Es′∼Pθ|s,a

[
ψ (s′)

⊤
]

and Varθs,a(r) is the vari-90

ance of the reward under θ defined by Varθs,a(r) ≜
(
Eθ
s,a

[
r2
]
− Eθ

s,a [r]
2
)

.91

A closer look at the derivatives of the model (see Appendix D.3) tells us that previous inequalities directly imply a92

control over the eigenvalues of the Hessian matrices of the log-normalizers.93

We now state our main result, the regret upper-bound of BEF-RLSVI.94

Theorem 3 (Regret bound) Let A ≜ (tr(AiA
⊤
j ))i,j∈[d] and Gs,a ≜ (φ(s, a)⊤A⊤

i Ajφ(s, a))i,j∈[d]. Under Assump-95

tion 2 and further considering that96

1. max{∥θr∥A, ∥θp∥A} ≤ BA, ∥A−1Gs,a∥ ≤ Bφ,A and Eθr [r(s, a)] ∈ [0, 1] for all (s, a).97

2. noise ξk ∼ N (0, xk(Ḡ
p
k)

−1) satisfies xk ≥
(
H
√

βpβp(K,δ)
αpαr +

√
βrβr(K,δ)min{1,αp

αr }
2αr

)2

∝ dH2,98

then for all δ ∈ (0, 1], with probability at least 1− 7δ,

R(K) ≤
√
KH

[
2H

(√
2βp

αp
βp(K, δ)γpK+(1+

√
γrK)

√
log(1/δ2)

)
︸ ︷︷ ︸

Transition concentration ≈ dH

+ βr
√
βr(n, δ)γrK

2αr︸ ︷︷ ︸
Reward concentration ≈ d

+ cβr
√
xKdγrK log(dK/δ) +

βr
√
xKdγrK log(e/δ2)

Φ(−1)
(1+

√
log(d/δ))︸ ︷︷ ︸

Noise concentration ≈ d3/2H

]

+
√
HγrK

[
βrCd

(√
βr(K, δ)

2αr
+ c
√
xKd log(dK/δ)

)
︸ ︷︷ ︸

Estimation error for no clipping ≈ dH

+
βrd

√
xK

Φ(−1)
(1+

√
log(d/δ))

√
Cd

(
1+

αrBφ,AH

η

)
︸ ︷︷ ︸

Learning error for no clipping ≈ (dH)3/2

]
,

where for i ∈ [p,r], βi(K, δ) ≜ η
2B

2
A + γiK + log(1/δ), and γiK ≜ d log(1 + βi

η Bφ,AHK). Also, Cd ≜99

3d
log(2) log

(
1 +

αr∥A∥2
2B

2
φ,A

η log(2)

)
, Φ is the Gaussian CDF, and c is a universal constant.100

Theorem 3 entails a regret R(K) = O(
√
d3H3K) for BEF-RLSVI, where d is the number of parameters of the101

bilinear exponential family model, K is the number of episodes, and H is the horizon of an episode.102

Comparison with other bounds. The closest work to ours is Chowdhury et al. (2021) as it considers the same model103

for transitions but with known rewards. They propose a UCRL-type and PSRL-type algorithm, which achieve a regret104

of order Õ(
√
d2H4K). There are two notable algorithmic differences with our work. First, they do exploration using105

intractable-optimistic upper bounds or high-dimensional posteriors, while we do it with explicit perturbation. The second106

difference is in planning. While they assume access to a planning oracle, we do it explicitly with pseudo-polynomial107

complexity (Section 4). Moreover, we improve the regret bound by a
√
H factor thanks to an improved analysis, (cf.108

Lemma 24). But similar to all RLSVI-type algorithms, we pick up an extra
√
d (cf. (Abeille and Lazaric, 2017)).109
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Zanette et al. (2020) adapts RLSVI for continuous state-action spaces. Assuming low-rank models of transitions and110

rewards, it shows a regret bound R(K) = Õ(
√
d4H5K), which is larger than ours by O(

√
dH2). In algorithm design,111

we improve on their work by removing the need to carefully clip the value function. Analytically, our model allows us112

to use transportation inequalities (cf. Lemma 19) instead of the simulation lemma, which saves us a
√
H factor.113

Ren et al. (2021) considers Gaussian transitions, i.e. s′ = f∗(s, a)+ ϵ such that ϵ ∼ N
(
0, σ2

)
. This is a particular case114

of our model. They propose to use Thompson Sampling, and have the merit of being the first to have observed linearity115

of the value function from this transition structure. But they do not connect it to the finite dimensional approximation116

of Rahimi and Recht (2007) unlike us (Section 4). Finally, they show a Bayesian regret bound of O(
√
d2H3K). This117

notion of regret is weaker than frequentist regret, hence this result is not directly comparable with Theorem 3.118

Tightness of regret bound. A lower bound for episodic RL with continuous state-action spaces is still missing. However,119

for tabular RL, (Domingues et al., 2021) proves a lower bound of order Ω(
√
H3SAK). To represent a tabular MDP in120

our model, we need d = S2 ×A parameters (Section 4.3, (Chowdhury et al., 2021)). In this case, our bound becomes121

R(K) = O(
√
(S2A)3H3K), which is clearly not tight is S and A. This is understandable due to the relative generality122

of our setting. We are however positively surprised that our bound is tight in terms of its dependence on H and K.123

4. Algorithm design: building blocks of BEF-RLSVI124

We present necessary details about BEF-RLSVI and discuss the key algorithm design techniques.125

Estimation of parameters. We estimate transitions and rewards from observations similar to EXP-UCRL Chowdhury
et al. (2021), i.e. by using a penalized maximum likelihood estimator

θ̂p(k) ∈ argmin
θ∈Rd

k∑
t=1

H∑
h=1

− logPθ

(
sth+1 | sth, ath

)
+ η pen(θ).

Here, pen(θ) is a trace-norm penalty: pen(θ) = 1
2∥θ∥A and A = (tr(AiA

⊤
j ))i,j . By properties of the exponential

family, the penalized maximum likelihood estimator verifies, for all i ≤ d:

k∑
t=1

H∑
h=1

(
ψ
(
sth+1

)
− Eθ̂pk

sth,a
t
h
[ψ (s′)]

)⊤

Aiφ
(
sth, a

t
h

)
= η∇i pen

(
θ̂pk

)
. (6)

Equation (6) can be solved in closed form for simple distributions, like Gaussian, but it can involve integral approxima-
tions for other distribution. We estimate the parameter for reward, i.e. θr, similarly

θ̂r(k) ∈ argmin
θ∈Rd

k∑
t=1

H∑
h=1

− logPθ

(
rt | sth, ath

)
+ η pen(θ), (7)

=⇒
k∑

t=1

H∑
h=1

(
rt − Eθ̂rk

sth,a
t
h
[r]
)
B⊤Aiφ

(
sth, a

t
h

)
= η∇i pen

(
θ̂rk

)
∀i ∈ [d]. (8)

Exploration. A significant challenge in RL is handling exploration in continuous spaces. The majority of the literature
is split between intractable, upper confidence bound-style optimism or Thompson sampling algorithms with high-
dimensional posterior and guarantees only in terms of Bayesian regret. In BEF-RLSVI, we adopt the approach of
reward perturbation motivated by the RLSVI-framework Zanette et al. (2020); Osband et al. (2016). We show that
perturbing the reward estimation can guarantee optimism with a constant probability, i.e. there exists ν ∈ (0, 1] such
that for all k ∈ [K] and sk1 ∈ S,

P
(
Ṽ1(s

k
1)− V ⋆

1 (s
k
1) ≥ 0

)
≥ ν.

Zanette et al. (2020) proves that this suffices to bound the learning error. However, their method clashes with not126

clipping the value function, as it modifies the probability of optimism. Thus, Zanette et al. (2020) proposes an involved127

clipping procedure to handle the issue of unstable values. Instead, by careful geometric analysis (cf. Lemma 26),128

we bound the occurrences of the unstable values, and in turn, upper bound the regret without clipping. Note that129
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unlike (Ishfaq et al., 2021), BEF-RLSVI does not guarantee that the estimated value function is optimistic but still is130

able to control the learning error (cf. Section 5).131

Planning. Recall that with our model assumptions, we can write the state-action value function linearly (Equation (5)).132

Using BEF-RLSVI, we have at step h:133

Qπ
θ̂p,θ̃r,h

(s, a) = Eθ̃r [r(s, a)] +

〈
ϕp(s, a),

∫
S
µp(s̃)V π

θ̂p,θ̃r,h+1
(s̃)ds̃

〉
.

Then, we select the best action greedily using dynamic programming to compute Qh(s, a). Although our model134

yields infinite dimensional ϕp and ψp, approximating them (cf. next paragraph) with linear features of dimension135

O(pH2K log(HK)) is possible without increasing the regret. Thus, the planning is done in O(pH3K log(HK)),136

which is pseudo-polynomial in p, H and K, i.e. tractable.137

For details about the finite-dimensional approximation of our transition kernel, refer to Appendix E. Now, we highlight138

the schematic of a finite-dimensional approximation of ϕp and ψp. We proceed in three steps. 1) We have with high139

probability S(Vθ̂p,θ̃r,h) ≤ dH3/2 (Section 5). 2) If we have a uniform ϵ-approximation of Pθp , we show that using it140

incurs at most an extra O(ϵdH5/2K) regret. 3) Finally, following Rahimi and Recht (2007), we approximate uniformly141

the shift invariant kernels, here the RBF in Equation (4), within ϵ error and with features of dimensions O(pϵ−2 log 1
ϵ2 ),142

where p is dimension of ψ. Associating these three elements and choosing ϵ = 1/
√
(H2K), we establish our claim.143

5. Theoretical analysis: proof outline144

To convey the novelties in our analysis, we provide a proof sketch for Theorem 3. We start by decomposing the regret
into an estimation loss and a learning error, as given below

R(K) =

K∑
k=1

(V ⋆
θp,θr,1 − V πk

θp,θr,1)(s1k) =

K∑
k=1

(V ⋆
θp,θr,1 − V πk

θ̂p,θ̃r,1︸ ︷︷ ︸
learning

+V πk

θ̂p,θ̃r,1
− V πk

θp,θr,1︸ ︷︷ ︸
Estimation

)(s1k). (9)

For the estimation error, we use smoothness arguments with concentrations of parameters up to some novelties.145

Regarding the learning error, we show that the injected noise ensures a constant probability of anti-concentration.146

Applying Assumption 2 and Lemma 24 leads to the upper-bound.147

5.1 Bounding the estimation error148

We further decompose the estimation error into the errors in estimating transitions and rewards.
V π
θ̂p,θ̃r

(s1k)− V π
θp,θr(s1k) = V π

θ̂p,θr
(s1k)− V π

θp,θr(s1k)︸ ︷︷ ︸
transition estimation

+V π
θ̂p,θ̃r

(s1k)− V π
θ̂p,θr

(s1k)︸ ︷︷ ︸
reward estimation

(10)

Transition estimation Since the reward parameter is exact, the value function’s span is ≤ H . Then, using the149

transportation of Lemma 19 we obtain the bound H
∑H

h=1

√
2KLshk,ahk (θ

p, θ̂p). We notice that since the reward150

parameter is exact, the bound is actually H min{1,
∑H

h=1

√
2KLshk,ahk (θ

p, θ̂p)}. Using Lemma 24 under Assumption 2,151

we win a
√
H factor compared to the analysis of Chowdhury and Gopalan (2019).152

Reward estimation Previous work uses clipping to help control this error, but in this case it can hinder the opti-153

mism probability by biasing the noise. Zanette et al. (2020) proposes an involved clipping depending on the norms154

∥(Aiφ(s
k
h, a

k
h))i∈[d]∥(Ḡp

k)
−1 , which is somewhat delicate to analyze and deploy. We remedy the situation acting solely155

in the proof. First let’s define what we call the set of “bad rounds”:
{
k ∈ [K],∃h : ∥(Aiφ(s

k
h, a

k
h))i∈[d]∥(Ḡp

k)
−1 ≥ 1

}
,156

these rounds are why clipping is necessary. Thanks to Lemma 26, we know that the number of such rounds is at most157

O(d). Surprisingly, it depends neither on H nor on K. We show that the “bad rounds” incur at most O(d3/2H2) regret,158

independent of K. Therefore, our algorithm can forgo clipping for free.159
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Remark 4 If it wasn’t for the episodic nature of our setting, we could have used the forward algorithm to eliminate the160

span control issue. We refer to Vovk (2001); Azoury and Warmuth (2001) for a description of this algorithm, Ouhamma161

et al. (2021) for a stochastic analysis, and Section 4 therein for an application to linear bandits.162

5.2 Bounding the learning error163

To upper-bound this term of the regret, we first show that the estimated value function is optimistic with a constant164

probability. Then, we show that this is enough to control the learning error.165

Stochastic optimism. The perturbation ensures a constant probability of optimism. Specifically,

(Vθ̂p,θ̃r,1−V
⋆
θp,θr,1)(s1) ≥ (Q⋆

θ̂p,θ̃r,1
−Q⋆

1)(s1, π
⋆(s1))

≥ V π⋆

θ̂p,θr
(s1)− V π⋆

θp,θr(s1)︸ ︷︷ ︸
first term

+V π⋆

θ̂p,θ̂r
(s1)− V π⋆

θ̂p,θr
(s1)︸ ︷︷ ︸

second term

+V π⋆

θ̂p,θ̃r
(s1)− V π⋆

θ̂p,θ̂r
(s1)︸ ︷︷ ︸

third term

The first and second terms are perturbation free, we handle them similarly to the estimation error, i.e. using concentration
arguments for θ̂p and θ̂r. For the third term, we use transportation of rewards (Lemma 23) and anti-concentration of ξk
(Lemma 18). We find that with probability at least 1− 2δ

(Vθ̂p,θ̃r,1 − V ⋆
θp,θr,1)(s1) ≥ξ⊤k E(s̃t)t∈[H]∼θ̂p|sk1

[
H∑
t=1

Varθ
r
j (r)

2
(Aiφ(s̃t, π

⋆(s̃t)))i∈[d]

]
B

−Hc(n, δ)

∥∥∥∥∥
H∑

h=1

E(s̃t)t∈[H]∼θ̂p|sk1

[
(Aiφ(s̃h, π

⋆(s̃h)))i∈[d]

]∥∥∥∥∥
(Ḡp

k)
−1

,

where c(n, δ)=
(√

βpβp(n, δ)/αp+
√
βrβr(n, δ)min{1, αp/αr}/(2αr)

)
. Since ξk∼N (0, xk(Ḡ

p
k)

−1) and xk≥H2c(n, δ)2,166

we get P
(
V π
θ̂p,θ̃r,1

(s1)− V ⋆
θp,θr,1(s1) ≥ 0

)
≥ Φ(−1), where Φ is the normal CDF. This is ensured by the anti-167

concentration property of Gaussian random variables, see Lemma 18.168

From stochastic optimism to error control: Existing algorithms require the value function to be optimistic (i.e.169

negative learning error) with large probability. Contrary to them, BEF-RLSVI only requires the estimated value to be170

optimistic with a constant probability. When it is, the learning happens. Otherwise, the policy is still close to a good171

one thanks to the decreasing estimation error, and the learning still happens. This part of the proof is similar in spirit to172

that of Zanette et al. (2020).173

Upper bound on V ⋆
1 : Draw (ξ̄k)k∈[K] i.i.d copies of (ξk)k∈[K] and define the event where optimism holds as Ōk ≜174

{Vθ̂p,θ̃rk,1(s
k
1)− V ⋆

1 (s
k
1) ≥ 0}. This implies that V ⋆

1 (s
k
1) ≤ Eξ̄k|Ōk

[Vθ̂p,θ̂r+ξ̄k,1
(sk1)].175

Lower bound on Vθ̂p,θ̃r : Consider V1(s
k
1) to be a solution of the optimization problem

min
ξk

Vθ̂p,θ̂r+ξk,1
(sk1) subject to: ∥ξk∥Ḡk

≤
√
xkd log(d/δ),

As the injected noise concentrates, we obtain V1(s
k
1) ≤ Vθ̂p,θ̃r(s

k
1).176

Combination: Using these upper and lower bounds, we show that with probability at least 1− δ,

V ⋆
1 (s

k
1)−Vθ̂p,θ̂r+ξ̄k,1

(sk1) ≤ Eξ̄k|Ōk
[Vθ̂p,θ̂r+ξ̄k,1

(sk1)− V1(s
k
1)]

≤
(
Eξ̄k [Vθ̂p,θ̂r+ξ̄k,1

(sk1)− V1(s
k
1)]− Eξ̄k|Ōc

k
[Vθ̂p,θ̂r+ξ̄k,1

(sk1)− V1(s
k
1)]P(Ōc

k)
)
/P(Ōk),

The last step follows from the tower rule. Note that the term inside the expectations is positive with high probability but177

not necessarily in expectation. We follow the lines of the estimation error analysis to complete the proof of Theorem 3.178

We refer to Appendix B.2 for the detailed proof.179
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6. Related works: functional representations with regret and tractability180

Our work extends the endeavor of using functional representations to perform optimal regret minimization in continuous181

state-action MDPs. We now provide a few complementary details.182

General functional representation. (Dai et al., 2018) provides the first convergence guarantee for general nonlinear183

function representations in the Maximum Entropy RL setting, where entropy of a policy is used as a regularizer to184

induce exploration. Thus, the analysis cannot address episodic RL, where we have to explicitly ensure exploration with185

optimism. (Wang et al., 2020) proposes a framework that leverages the optimism with confidence bound approach for186

general functional representations with bounded Eluder dimensions, which is a complexity measure in RL. However,187

knowing the Eluder dimension is crucial for the optimistic confidence bound in their algorithm. Eluder dimension is188

not known for MDPs except linear and tabular MDPs. To concretize our design, we focus on the general but explicit189

bilinear exponential family of MDPs than any abstract representation.190

Bilinear exponential family of MDPs. Exponential families are studied widely in RL theory, from bandits to MDPs191

Lu et al. (2021); Korda et al. (2013); Filippi et al. (2010); Kveton and Hauskrecht (2006), as an expressive parametric192

family to design theoretically-grounded model-based algorithms. Chowdhury et al. (2021) first studies episodic RL193

with Bilinear Exponential Family (BEF) of transitions, which is linear in both state-action pairs and the next-state. It194

proposes a regularized log-likelihood method to estimate the model parameters, and two optimistic algorithms with195

upper confidence bounds and posterior sampling. Due to its generality to unifiedly model tabular MDPs, factored MDPs,196

linear MDPs, and linearly controlled dynamical systems, the BEF-family of MDPs has received increasing attention (Li197

et al., 2021). Li et al. (2021) estimates the model parameters based on score matching that enables them to replace198

regularity assumption on the log-partition function with Fisher-information and assumption on the parameters. Both199

(Chowdhury et al., 2021; Li et al., 2021) achieve a worst-case regret of order Õ(
√
d2H4K) for known reward. On a200

different note, (Du et al., 2021; Foster et al., 2021) also introduces a new structural framework for generalization in RL,201

called bilinear classes as it requires the Bellman error to be upper bounded by a bilinear form. Instead of using bilinear202

forms to capture non-linear structures, this class is not identical to BEF class of MDPs, and studying the connection is203

out of the scope of this paper. Specifically, we address the shortcomings of the existing works on BEF-family of MDPs204

that assume known rewards, absence of RLSVI-type algorithms, and access to oracle planners.205

Tractable planning and linearity. Planning is a major byproduct of the chosen functional representation. In general,206

planning can incur high computational complexity if done naïvely. Specially, Du et al. (2019) shows that for some207

settings, even with a linear ϵ-approximation of the Q-function, a planning procedure able to produce an ϵ-optimal policy208

has a complexity at least 2H . Thus, different works (Shariff and Szepesvári, 2020; Lattimore et al., 2020; Van Roy209

and Dong, 2019) propose to leverage different low-dimensional representations of value functions or transitions to210

perform efficient planning. Here, we take note from (Ren et al., 2021) that Gaussian transitions induce an explicit211

linear value function in an RKHS. And generalize this observation with the bilinear exponential. Moreover, using212

uniformly good features Rahimi and Recht (2007) to approximate transition dynamics from our model enables us213

to design a tractable planner. We provide a detailed discussion of this approximation in Section 4. More practically,214

Ren et al. (2021); Nachum and Yang (2021) use representations given by random Fourier features (Rahimi and Recht,215

2007) to approximate the transition dynamics and provide experiments validating the benefits of this approach for216

high-dimensional Atari-games.217

7. Conclusion and future work218

We propose the BEF-RLSVI algorithm for the bilinear exponential family of MDPs in the setting of episodic-RL.219

BEF-RLSVI explores using a Gaussian perturbation of rewards, and plans tractably (O(pH3K log(HK)) complexity)220

thanks to properties of the RBF kernel. Our proof shows that clipping can be forwent for similar RLSVI-type algorithms.221

Moreover, we prove a
√
d3H3K frequentist regret bound, which improves over existing work, accommodates unknown222

rewards, and matches the lower bound in terms of H and K. Regarding future work, we believe that our proof approach223

can be extended to rewards with bounded variance. We also believe that the extra
√
d in our bound is an artefact of224

the proof, and specifically, the anti-concentration. We will investigate it further. Finally, we plan to study the practical225

efficiency of BEF-RLSVI through experiments on tasks with continuous state-action spaces in an extended version of226

this work.227
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Appendix A. Notations306

We dedicate this section to index all the notations used in this paper. Note that every notation is defined when it is307

introduced as well.308

Table 2: Notations

H
def
= number of steps in a given episode

K
def
= number of episodes

T
def
= KH , total number of steps

skh
def
= state at time h of episode k, denoted sh when k is clear from context

akh
def
= action at time h of episode k, denoted ah when k is clear from context

r(s, a)
def
= realization of the reward in state s under action a

θp
def
= parameter of the transition distribution, ∈ Rd

θr
def
= parameter of the reward distribution, ∈ Rd

θ
def
= ∈ Rd denotes either θr or θp, unless stated otherwise

θ̂
def
= θ estimator with Maximum Likelihood unless stated otherwise

θ̃
def
= θ̂ + ξ where ξ is a chosen noise. Perturbed estimation of θ.

[θ1, θ2]
def
= the d-dimensional ℓ∞ hypercube joining θ1 and θ2

Pθp
def
= transition under the exponential family model with parameter θp

ψ
def
= feature function, ∈ (Rp

+)
S

φ
def
= feature function, ∈ (Rq

+)
S×A

B
def
= p-dimensional vector

Mθ
def
=

∑d
i=1 θiAi, where Ai are p× q matrices.

Zr def
= the rewards’ log partition function

Zp def
= the transitions’ log partition function

H def
= Hilbert space where we decompose transitions

µp
def
= feature function after decomposition, ∈ (R+)

S×H

ϕp
def
= feature function after decomposition, ∈ (R+)

S×A×H

Gs,a
def
=

(
φ(s, a)⊤A⊤

i Ajφ(s, a)
)
i,j∈[d]

Ḡr
k

def
= Ḡr

(k−1)h = η
αrA+

∑k−1
τ=1

∑H
h=1Gsτh,a

τ
h

Ḡp
k

def
= Ḡp

(k−1)h = η
αpA+

∑k−1
τ=1

∑H
h=1Gsτh,a

τ
h

Cθ
s,a [ψ (s′)]

def
= Eθ

s,a

[
ψ (s′)ψ (s′)

⊤
]
− Eθ

s,a [ψ (s′)]Eθ
s,a

[
ψ (s′)

⊤
]

βp
def
= supθ,s,a λmax

(
Cθ

s,a [ψ (s′)]
)

linked to the maximum eigenvalue of ∇2Zp

αp
def
= infθ,s,a λmax

(
Cθ

s,a [ψ (s′)]
)

linked to the minimum eigenvalue of ∇2Zp

βr
def
= λmax

(
BB⊤) supθ,s,a Varθs,a(r), linked to the maximum eigenvalue of ∇2Zr

αr
def
= λmin

(
BB⊤) infθ,s,a Varθs,a(r), linked to the minimum eigenvalue of ∇2Zr
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Appendix B. Regret analysis309

We provide a high probability analysis of the regret of BEF-RLSVI under standard regularity assumptions of the
representation. First we recall the regret definition then we separate the perturbation error from the statistical estimation:

R(K) =

K∑
k=1

(V ⋆
θp,θr,1 − V πk

θp,θr,1)(s
k
1) =

K∑
k=1

(
V ⋆
θp,θr,1 − V πk

θ̂p,θ̃r,1︸ ︷︷ ︸
learning

+V πk

θ̂p,θ̃r,1
− V πk

θp,θr,1︸ ︷︷ ︸
Estimation

)
(sk1)

B.1 Estimation error310

To show that the estimation error
(∑K

k=1 Vθ̂p,θ̃r,1 − V πk

θp,θr,1

)
can be controlled, we decompose it to an error that comes311

from the estimation of the transition parameter and one that comes from the estimation of the reward parameter:312

V π
θ̂p,θ̃r

(sk1)− V π
θp,θr(s

k
1) = V π

θ̂p,θr
(sk1)− V π

θp,θr(s
k
1)︸ ︷︷ ︸

transition estimation

+V π
θ̂p,θ̃r

(sk1)− V π
θ̂p,θr

(sk1)︸ ︷︷ ︸
reward estimation

,

we control each term separately in Section B.1.1 and Section B.1.2. Therefore, we obtain the following lemma313

controlling the estimation error.314

Lemma 5 The estimation error satisfies, with probability at least 1− 5δ

K∑
k=1

Vθ̂p,θ̃r,1(s
k
1)− V π

θp,θr,1(s
k
1) ≤ 2H

√
2βp

αp
βp(N, δ)NγpK + 2H

√
2N log(1/δ)

+

[√
KHd log (1 + αrη−1Bφ,An) + Cd

√
Hd log(1 + αη−1Bφ,AH)

]
×

(√
βr(n, δ)

2αr

+c
√
(max

k
xk)d log(dK/δ)

)
βr +

√
2KHd log (1 + αrη−1Bφ,An) log(1/δ)

where for i ∈ [p,r], βi(K, δ) ≜ η
2B

2
A + γiK + log(1/δ), and γiK ≜ d log(1 + βi

η Bφ,AHK). Also, Cd ≜315

3d
log(2) log

(
1 +

αr∥A∥2
2B

2
φ,A

η log(2)

)
, and c is a universal constant.316

Proof It follows directly by combining Lemma 6 and Lemma 9 using a union bound.317

318

B.1.1 TRANSITION ESTIMATION319

The goal of this section is to prove the following lemma which bounds the regret due to transition estimation.320

Lemma 6 We have, with probability at least 1− 2δ

K∑
k=1

Vθ̂p,θr(s
k
1)− V π

θp,θr(s
k
1) ≤ 2H

√
2βp

αp
βp(N, δ)NγpK + 2H

√
2N log(1/δ)

where γpK := d log
(
1 + βpη−1Bφ,AHK

)
, and βp(K, δ) ≜ η

2B
2
A + γpK + log(1/δ).321
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Proof The proof proceeds in two parts. First, we will reveal a bound in terms of the induced local geometry, i.e. a322

bound in terms of KL-divergence. Second, we explicit the bound by transferring the induced local geometry to the323

euclidean one.324

1) Bound in terms of local geometry. We provide a bound on the estimation error of the transition in terms of KL325

divergences, for that end we show that the estimation error can be decomposed and well controlled. We start by writing326

the one-step decomposition:327

V π
θ̂p,θr,1

(sk1)−V π
θp,θr,1(s

k
1)

= Eθ̂p

sk1 ,a
k
1

[
V π
θ̂p,θr,2

]
− Eθp

sk1 ,a
k
1

[
V π
θ̂p,θr,2

]
+ Eθp

sk1 ,a
k
1
[V π

θ̂p,θr,2
− V π

θp,θr,2]

= Eθ̂p

sk1 ,a
k
1

[
V π
θ̂p,θr,2

]
− Eθp

sk1 ,a
k
1

[
V π
θ̂p,θr,2

]
+ V π

θ̂p,θr,2
(s2k)− V π

θp,θr,2(s2k) + ζk1

=

H∑
h=1

Eθ̂p

shk,ahk

[
V π
θ̂p,θr,h+1

]
− Eθp

shk,ahk

[
V π
θ̂p,θr,h+1

]
+ ζhk

where ζhk = Eθp

shk,ahk
[V π

θ̂p,θr,h+1
− V π

θp,θr,h+1]−
(
V π
θ̂p,θr,h+1

(sh+1k)− V π
θp,θr,h+1(sh+1k)

)
is a martingale sequence,

and the last equality comes by induction. Here we consider the true reward parameter which verifies |Eθr [r(s, a)]| ≤ 1
by assumption, therefore |ζhk| ≤ 2H . Using the Azuma-Hoeffding inequality Boucheron et al. (2013), with probability
at least 1− δ

K∑
k=1

H∑
h=1

ζhk ≤ 2H
√
2KH log(1/δ)

We finish bounding the first term using Lemma 19, indeed

Eθ̂p

shk,ahk

[
V π
θ̂p,θr,h+1

]
− Eθp

shk,ahk

[
V π
θ̂p,θr,h+1

]
≤ H

√
2KLshk,ahk

(θp, θ̂p)

≤ Hmin

{
1,

√
2KLshk,ahk

(θp, θ̂p)

}
,

the last inequality follows because ∀h, S(Vθ̂p,θr,h+1) ≤ H .328

Remark 7 Traditionally, the expected value difference bound follows from the simulation lemma Ren et al. (2021). The329

simulation lemma incurs an extra
√
H factor compared to our bound.330

We deduce that with probability at least 1− δ:

K∑
k=1

Vθ̂p,θr(s
k
1)− V π

θp,θr(s
k
1)

≤ H

K∑
k=1

min

{
1,

H∑
h=1

√
2KLshk,ahk

(θp, θ̂p)

}
+ 2H

√
2KH log(1/δ) (11)

2) Bounding the sum of KL divergences. we explicit the bound of inequality (11) using Assumption 2 along with
properties of the exponential family (cf. Section D.3). We have for all (s, a),

∀θp, θp′, αp

2
∥θp′ − θp∥2Gs,a

≤ KLs,a (θ
p, θp′) ≤ βp

2
∥θp′ − θp∥2Gs,a

. (12)

This implies that

KLs,a

(
θ̂p(k), θp

)
≤ βp

2

∥∥∥θp − θ̂p(k)
∥∥∥2
Gs,a

≤ βp
∥∥∥(Ḡp

k)
−1/2Gs,a(Ḡ

p
k)

−1/2
∥∥∥ 1

2

∥∥∥θp − θ̂p(k)
∥∥∥2
Ḡp

k

,

14
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where Ḡp
k ≡ Ḡp

(k−1)H := Gk + (αp)−1ηA and Gk ≡
∑k−1

τ=1

∑H
h=1Gsτs ,a

τ
h

.331

From Corollary 14, with probability at least 1− δ and for all k ∈ N∥∥∥θp − θ̂p(k)
∥∥∥2
Ḡp

k

≤ 2βp(k, δ)/αp.

Also, using Lemma 24, we have

T∑
t=1

H∑
h=1

min
{
1,
∥∥∥(Ḡp

k)
−1/2Gs,a(Ḡ

p
k)

−1/2
∥∥∥} ≤ 2d log

(
1 + αpη−1Bφ,AHK

)
.

Combining these two results we obtain, with probability at least 1− δ:332

T∑
t=1

H∑
h=1

min
{
1,KLsth,a

t
h

(
θ̂p(k), θp

)}
≤ 2βp

αp
βp(K, δ)γpK . (13)

Remark 8 Notice that the minimum with 1 is crucial, indeed, without it the bound deteriorates by a factor H as was333

the case in Chowdhury et al. (2021).334

3) Combining the bounds. By applying Cauchy-Schwarz in inequality (11), we obtain, with probability at least 1− δ,
and for all K ∈ N

K∑
k=1

Vθ̂p,θr(s
k
1)− V π

θp,θr(s
k
1) ≤ H

√√√√2

K∑
k=1

H∑
h=1

KLshk,ahk
(θp, θ̂p) + 2H

√
2KH log(1/δ).

Injecting inequality (13) proves the desired result with probability at least 1− 2δ.335

336

B.1.2 REWARD ESTIMATION337

Now, we provide the bound over the regret due to estimating the reward parameter.338

Lemma 9 With probability at least 1− 3δ, the following result holds true.

K∑
k=1

V π
θ̂p,θ̃r,1

(sk1)−V π
θ̂p,θr,1

(sk1) ≤

(√
βr(K, δ)

2αr
+ c
√
(max
k≤K

xk)d log(dK/δ)

)
βr

×

(√
Cd

(
1 +

αrBφ,AH

η

)
+
√
K log(e/δ2)

)√
Hd log (1 + αrη−1Bφ,AHK),

where βp(K, δ) ≜ η
2B

2
A+γ

p
K+log(1/δ), and γpK ≜ d log(1+ βp

η Bφ,AHK). Also, Cd ≜ 3d
log(2) log

(
1 +

αr∥A∥2
2B

2
φ,A

η log(2)

)
,339

and c is a universal constant.340

Proof The reward estimation error in Equation (10) can be written explicitly. Indeed, using Lemma 23341
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V π
θ̂p,θ̃r,1

(sk1)− V π
θ̂p,θr,1

(sk1) = E(s̃h)1≤h≤H∼π|θ̂p,sk1

[
H∑

h=1

Vars̃h,π(s̃h)(r)
2

B⊤Mθ̃r−θrφ(s̃h, π(s̃h))

]

≤E

[
H∑

h=1

Vars̃h,π(s̃h)(r)
2

∥θ̃r − θr∥Ḡr
k
∥(B⊤Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr

k)
−1

]

≤∥θ̃r − θr∥Ḡr
k
E

[
H∑

h=1

Vars̃h,π(s̃h)(r)
2

∥(B⊤Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k)

−1

]

≤∥θ̃r − θr∥Ḡr
k

βr

2
E

[
H∑

h=1

∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k)

−1︸ ︷︷ ︸
def
= t̃rajk

]
,

where trajk
def
=
∑H

h=1 ∥(Aiφ(sh, π(sh)))1≤i≤d∥(Gr
k)

−1 .342

Bad rounds. We separate the analysis of this estimation error into bad and good rounds. Here we analyze the bad
rounds, which are define by the following set:

T = {k ∈ N∗,∃h ∈ [H], ∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k)

−1 ≥ 1}

1) We know that ∥(Aiφ(s̃h, π(s̃h)))1≤i≤d(Aiφ(s̃h, π(s̃h)))
⊤
1≤i≤d∥22 ≤ ∥A∥22B2

φ,A. Consequently, according to
Lemma 26

|T | ≤ 3d

log(2)
log

(
1 +

α∥A∥22B2
φ,A

η log(2)

)
.

2) Since Gk is positive semi-definite, we have Ḡr
k ⪰ (αr)−1ηA, and in turn, for all state-action couples (s, a),343 ∥∥(Ḡr

k)
−1Gs,a

∥∥ ≤ αr

η

∥∥A−1Gs,a

∥∥ ≤ αrBφ,A
η .344

This further yields ∥∥∥∥∥I + (Ḡr
k)

−1
H∑

h=1

Gsth,a
t
h

∥∥∥∥∥ ≤ 1 +

H∑
h=1

∥∥∥(Ḡr
k)

−1Gsth,a
t
h

∥∥∥ ≤ 1 +
αrBφ,AH

η
.

Let us define Ḡr
k+H := Ḡr

k +
∑H

h=1Gskh,a
k
h

. Then,

Ḡ−1
k+HGs,a =

(
I + (Ḡr

k)
−1

H∑
h=1

Gsth,a
t
h

)−1

(Ḡr
k)

−1Gs,a.

Therefore, for all pairs (s, a),

∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k)

−1 =
√
tr((Aiφ(s̃h, π(s̃h)))⊤1≤i≤d(Ḡ

r
k)

−1(Aiφ(s̃h, π(s̃h)))1≤i≤d)

=

√
tr(

(
1 +

αrBφ,AH

η

)
(Ḡr

k+H)−1Gs,a)

≤

√(
1 +

αrBφ,AH

η

)
∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr

k+H)−1

Since ∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k+H)−1 ≤ 1, we have ∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr

k+H)−1 ≤ min
{
1, ∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr

k)
−1

}
.

Consequently
H∑

h=1

∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k+H)−1 ≤

√
Hd log(1 + αrη−1Bφ,AH).
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3) From 1) and 2), we deduce that the total regret induced by rounds from T is bounded.∑
k∈T

∑
h∈[H]

V π
θ̂p,θ̃r,1

(sk1)− V π
θ̂p,θr,1

(sk1) ≤ ∥θ̃r − θr∥Ḡr
k

βr

2√√√√ 3d

log(2)
log

(
1 +

αr∥A∥22B2
φ,A

η log(2)

)(
1 +

αrBφ,AH

η

)
Hd log(1 + αrη−1Bφ,AH) (14)

Remark 10 The bad rounds analysis is one of our most important contributions as it enables us to forgo clipping345

without consequences. Consequently, this is a novel method to control the reward estimation error that improves on346

existing work for whom clipping was essential.347

Good rounds. Going forward we consider rounds from T̄ . Let us define

ζ ′k
def
= trajk −E(s̃h)1≤h≤H∼π|θ̂p,sk1

[
t̃rajk

]
.

where t̃rajk is the same quantity as traj but with a random realization of state transitions.
Since all feature norms are smaller than one, (ζ ′k)k is a martingale sequence with |ζ ′k| ≤

√
Hd log (1 + αrη−1Bφ,AHK).

We deduce that with probability at least 1− δ:

K∑
k=1

ζ ′k ≤
√
2KHd log (1 + αrη−1Bφ,AHK) log(1/δ)

Therefore, we have with probability at least 1− 3δ:

∑
k∈T c

V π
θ̂p,θ̃r,1

(sk1)− V π
θ̂p,θr,1

(sk1) ≤

(√
βr(K, δ)

2αr
+ c
√
(max

k
xk)d log(dK/δ)

)

× βr
√
KHd log (1 + αrη−1Bφ,AKH) log(e/δ2).

The last inequality follows from controlling the concentration of the reward parameter. First we observe that (Corol-348

lary 16) with probability at least 1− δ, uniformly over k ∈ N,
∥∥∥θr − θ̂r(k)

∥∥∥2
Ḡr

k

≤ 2
αr β

r(k, δ). Second, we also have349

that for all k ≥ 1, with probability at least 1− δ, ∥ξk∥Gr
k
≤ c
√
xkd log(d/δ), we then use a union bound. Combining350

with Equation (14) we find351

K∑
k=1

V π
θ̂p,θ̃r,1

(sk1)− V π
θ̂p,θr,1

(sk1) ≤

(√
βr(K, δ)

2αr
+ c
√
(max

k
xk)d log(dK/δ)

)

× βr
√
KHd log (1 + αrη−1Bφ,AHK) log(e/δ2).

This concludes the proof.352

353

Remark 11 If we use Lemma 23 without the martingale difference sequence, it will lead to a linear regret. Indeed, the354

span of the sum of norms over an episode is of order
√
H . Using the martingale technique instead allows us to retrieve355

a telescopic sum controlled using the elliptical lemma, this is essential to obtaining a sub-linear regret bound.356
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B.2 Learning error357

We now start the control of an important regret term, due to the distance between the estimated value function and the358

optimal value function.359

Lemma 12 If the variance parameter of the injected noise (ξk)k satisfies

xk ≥

H√βpβp(k, δ)

αpαr
+

√
βrβr(k, δ)min{1, αp

αr }
2αr

 ,

then the learning error is controlled with probability at least 1− 2δ as

K∑
k=1

V ⋆
1 (s

k
1)− V π

θ̂p,θ̂r+ξ̄k,1
(sk1) ≤

dβr
√
xk

(
1 +

√
log(d/δ)

)
Φ(−1)

√
H log (1 + αrη−1Bφ,AHK)

×

(√
Cd

(
1 +

αrBφ,AH

η

)
+
√
K log(e/δ2)

)
,

where for i ∈ [p,r], βi(K, δ) ≜ η
2B

2
A + γiK + log(1/δ), and γiK ≜ d log(1 + βi

η Bφ,AHK). Also Cd
def
=360

3d
log(2) log

(
1 +

αr∥A∥2
2B

2
φ,A

η log(2)

)
, and Φ is the normal CDF.361

This result basically means that we are no longer obliged to follow optimistic value functions, the perturbed estimation362

is enough to have a tight bound on the learning error.363

B.2.1 STOCHASTIC OPTIMISM364

The goal here is to show that by injecting our carefully designed noise in the rewards we can ensure optimism with a
constant probability. Consider the optimal policy π⋆, we have:

(Vθ̂p,θ̃r,1 − V ⋆
θp,θr,1)(s1) ≥ (Q⋆

θ̂p,θ̃r,1
−Q⋆

1)(s1, π
⋆(s1))

≥ V π⋆

θ̂p,θr
(s1)− V π⋆

θp,θr(s1)︸ ︷︷ ︸
first term

+V π⋆

θ̂p,θ̂r
(s1)− V π⋆

θ̂p,θr
(s1)︸ ︷︷ ︸

second term

+V π⋆

θ̂p,θ̃r
(s1)− V π⋆

θ̂p,θ̂r
(s1)︸ ︷︷ ︸

third term

First term. By assumption, the expected reward under the true parameter satisfies Eθr [r(s, a)] ∈ [0, 1], then
S
(∑H

t=1 Eθr [r(st, π(st))]
)
≤ H . Consequently, the first term can be controlled using Lemma 19

V π⋆

θp,θr(s1)− V π⋆

θ̂p,θr
(s1) ≤ H

√
KL(Pθ̂p(s2, . . . , sH), Pθp(s2, . . . , sH))

≤ H

√√√√E(s̃t)t∈[H]∼θ̂p|sk1

[
H∑
t=1

ψ(s̃t+1)⊤Mθ̂p−θpφ(s̃t, π
⋆(s̃t)) + Zp

θp(s̃t, π
⋆(s̃t))− Zp

θ̂p
(s̃t, π⋆(s̃t))

]

Using Taylor’s expansion, for all h ∈ [H],∃θh ∈ [θp, θ̂p] such that:

E(s̃t)t∈[H]∼θ̂p|sk1

[
ψ(s̃t+1)

⊤Mθ̂p−θpφ(s̃t, π
⋆(s̃t)) + Zp

θp(s̃t, π
⋆(s̃t))− Zp

θ̂p
(s̃t, π

⋆(s̃t))
]

=
1

2
(θ̂p − θp)⊤E(s̃t)t∈[H]∼θ̂p|sk1

[
∇2

sh,π⋆(sh)
Zp(θh)

]
(θ̂p − θp)

≤ βp

2
E(s̃t)t∈[H]∼θ̂p|sk1

[
∥θ̂p − θp∥2Gs̃h,π⋆(s̃h)

]
.
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Define uk
def
=
∑H

h=1 E(s̃t)t∈[H]∼θ̂p|sk1

[
(Aiφ(s̃h, π

⋆(s̃h)))i∈[d]

]
, then

V π⋆

θp,θr(s1)− V π⋆

θ̂p,θr
(s1) ≤ H

√√√√βp

2

H∑
h=1

E(s̃t)t∈[H]∼θ̂p|sk1

[
∥θ̂p − θp∥2Gs̃h,π⋆(s̃h)

]
≤ H

√
βp

2

∥∥∥θ̂p − θp
∥∥∥∑H

h=1 E
(s̃t)t∈[H]∼θ̂p|sk1

[Gs̃h,π⋆(s̃h)]

≤ H

√
βp

2

∥∥∥θ̂p − θp
∥∥∥
uku⊤

k

≤ H

√
βp

2

∥∥(Ḡp
k)

−1/2uku⊤k (Ḡ
p
k)

−1/2
∥∥∥θ̂p − θp∥Ḡp

k

≤ H

√
βp

2
∥uk∥(Ḡp

k)
−1∥θ̂p − θp∥Ḡp

k

The third line follows because ∀x ∈ Rd, ∥x∥∑
i=1 aia⊤

i
≤ ∥x∥(∑i=1 ai)(

∑
i=1 ai)⊤ , and the last one follows because

tr(AB) ≤ tr(A) tr(B) for any two real positive semi-definite matrices A and B.
We deduce, with probability at least 1− δ:

V π⋆

θp,θr(s1)− V π⋆

θ̂p,θr
(s1) ≤ H

√
βpβp(k, δ)

αp

∥∥∥∥∥
H∑

h=1

E(s̃t)t∈[H]∼θ̂p|sk1

[
(Aiφ(s̃h, π

⋆(s̃h)))i∈[d]

]∥∥∥∥∥
(Ḡp

k)
−1

Second term. We have

V π⋆

θ̂p,θ̂r
(s1)− V π⋆

θ̂p,θr
(s1) = E(s̃t)t∈[H]∼θ̂p|sk1

[
H∑
t=1

Varθrt (r)
2

B⊤Mθ̂r−θrφ(s̃t, π
⋆(s̃t))

]

= (θ̂r − θr)⊤E(s̃t)t∈[H]∼θ̂p|sk1

[
H∑
t=1

Varθrt (r)
2

(Aiφ(s̃t, π
⋆(s̃t)))i∈[d]

]
B

≤
√
βr

2
∥θ̂r − θr∥Ḡr

k

∥∥∥∥∥E(s̃t)t∈[H]∼θ̂p|sk1

[
H∑
t=1

(Aiφ(s̃t, π
⋆(s̃t)))i∈[d]

]∥∥∥∥∥
(Ḡr

k)
−1

The last inequality comes from Cauchy-Schwarz. Applying that the norm (sum) makes appear only symmetric matrices
times the variances so that we can bound the latter by βr.
We conclude that with probability at least 1− δ,

V π⋆

θ̂p,θ̂r
(s1)− V π⋆

θ̂p,θ̃r
(s1) ≤

βr
√
βr(k, δ)√
2αr

∥∥∥∥∥E(s̃t)t∈[H]∼θ̂p|sk1

[
H∑
t=1

(Aiφ(s̃t, π
⋆(s̃t)))i∈[d]

]∥∥∥∥∥
(Ḡr

k)
−1

We want to write all the norms in the same matrix. Therefore, with probability at least 1− δ,

V π⋆

θ̂p,θ̂r
(s1)− V π⋆

θ̂p,θ̃r
(s1) ≤

√
βrβr(k, δ)min{1, αp

αr }
2αr

×

∥∥∥∥∥E(s̃t)t∈[H]∼θ̂p|sk1

[
H∑
t=1

(Aiφ(s̃t, π
⋆(s̃t)))i∈[d]

]∥∥∥∥∥
(Ḡp

k)
−1

Third term. We have

V π⋆

θ̂p,θ̂r,1
(s1)− V π⋆

θ̂p,θ̃r,1
(s1) = E(s̃t)t∈[H]∼θ̂p|sk1

[
H∑
t=1

Varθ
r
j (r)

2
B⊤Mθ̂r−θ̃rφ(s̃t, π

⋆(s̃t))

]

= ξ⊤k E(s̃t)t∈[H]∼θ̂p|sk1

[
H∑
t=1

Varθ
r
j (r)

2
(Aiφ(s̃t, π

⋆(s̃t)))i∈[d]

]
B
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Given the normal CDF Φ, we obtain that with probability at least Φ(−1)

V π⋆

θ̂p,θ̂r
(s1)− V π⋆

θ̂p,θ̃r
(s1) ≥

√
xkαr

∥∥∥∥∥
[

H∑
t=1

Varθ
r
j (r)

2
(Aiφ(s̃t, π

⋆(s̃t)))i∈[d]

]∥∥∥∥∥
(Ḡp

k)
−1

Choosing xk ≥
(
H
√

βpβp(k,δ)
αpαr +

√
βrβr(k,δ)min{1,αp

αr }
2αr

)
and using Lemma 18, we find that the perturbed value365

function is optimistic with probability at least Φ(−1).366

B.2.2 CONTROLLING THE LEARNING ERROR367

In this section we see the core difference with optimistic algorithms. On the one hand, optimistic approaches require the368

value function generating the agent’s policy to be larger than the optimal one with large probability, and can therefore369

ensure that the learning error is negative. On the other hand, BEF-RLSVI only ensures that the value function is370

optimistic with a constant probability: intuitively when this event holds the learning happens, and if it does not then the371

policy is still close to a good one thanks to the decreasing estimation error.372

Upper bound on V ⋆
1 . Let us draw (ξ̄k)k∈[K] i.i.d copies of (ξk)k∈[K]. Define the optimism event at episode k:

Ōk = {Vθ̂p,θ̂r+ξ̄k,1
(sk1)− V ⋆

1 (s
k
1) ≥ 0} (15)

we know that P(Ōk) ≥ Φ(−1). This event provides the upper bound:

V ⋆
1 (s

k
1) ≤ Eξ̄k|Ōk

[Vθ̂p,θ̂r+ξ̄k,1
(sk1)] (16)

Lower bound on Vθ̂p,θ̃r . We define this bound with an optimization problem under concentration of the noise.
Consider V1(s

k
1) is the solution of

min
ξk

Vθ̂p,θ̂r+ξk,1
(s1k) (17)

∥ξk∥Ḡp
k
≤
√
xkd log(d/δ), ∀t ∈ [H]

Under the concentration of our injected noise, we obtain

V1(s
k
1) ≤ Vθ̂p,θ̃r(s

k
1) (18)

Combining the error bounds. Combining the upper bound of Equation (16) with the lower bound of Equation (18),
we get, with probability at least 1− δ:

V ⋆
1 (s

k
1)− Vθ̂p,θ̂r+ξ̄k,1

(sk1) ≤ Eξ̄k|Ōk
[Vθ̂p,θ̂r+ξ̄k,1

(sk1)− V1(s
k
1)]

Also, using the tower rule,

Eξ̄k [Vθ̂p,θ̂r+ξ̄k,1
(sk1)− V1(s

k
1)]

= Eξ̄k|Ōk
[Vθ̂p,θ̂r+ξ̄k,1

(sk1)− V1(s
k
1)]P(Ōk) + Eξ̄k|Ōc

k
[Vθ̂p,θ̂r+ξ̄k,1

(sk1)− V1(s
k
1)]P(Ōc

k)

Therefore,

V ⋆
1 (s

k
1)−Vθ̂p,θ̂r+ξ̄k,1

(sk1)

≤
(
Eξ̄k [Vθ̂p,θ̂r+ξ̄k,1

(sk1)− V1(s
k
1)]− Eξ̄k|Ōc

k
[Vθ̂p,θ̂r+ξ̄k,1

(sk1)− V1(s
k
1)]P(Ōc

k)
)
/P(Ōk)

=
(
Eξk [V

π
θ̂p,θ̂r+ξk,1

(sk1)− Vπ
1 (s

k
1)]− Eξk|Ōc

k
[Vθ̂p,θ̂r+ξk,1

(sk1)− V1(s
k
1)]P(Ōc

k)
)
/P(Ōk).

The last line follows since ξk and ξ̄k are i.i.d.373
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The rest of the analysis proceeds similarly to the proof of the reward estimation.374

Let us call the argument of the minimum in Equation (17) as ξ
k
. Using Lemma 23, we find

V π
θ̂p,θ̃r,1

(sk1)−V π
θ̂p,θ̂r+ξ

k
,1
(sk1)

= E(s̃h)1≤h≤H∼π|θ̂p,sk1

[
H∑

h=1

Vars̃h,π(s̃h)(r)
2

B⊤Mθ̃r−θ̂r−ξ
k

φ(s̃h, π(s̃h))

]

≤ E

[
H∑

h=1

Vars̃h,π(s̃h)(r)
2

∥θ̃r − θ̂r − ξ
k
∥Ḡp

k
∥(B⊤Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡp

k)
−1

]

≤ ∥θ̃r − θ̂r − ξ
k
∥Ḡp

k
E

[
H∑

h=1

Vars̃h,π(s̃h)(r)
2

∥(B⊤Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡp
k)

−1

]

≤ ∥ξ̃k − ξ
k
∥Ḡp

k

βr

2
E

[
H∑

h=1

∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡp
k)

−1

]
Then,

Eξ̃k

[
V π
θ̂p,θ̃r,1

(sk1)−V π
θ̂p,θ̂r+ξ

k
,1
(sk1)

]
≤ βr

2
Eξ̃k

[∥ξ̃k − ξ
k
∥Ḡp

k
]E(s̃h)∼π|θ̂p

[
H∑

h=1

∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡp
k)

−1

]
.

Also, ∣∣∣Eξk|Ōc
k
[Vθ̂p,θ̂r+ξk,1

(sk1)−V 1(s
k
1)]
∣∣∣

≤ βr

2
Eξ̃k|Ōc

k
[∥ξ̃k − ξ

k
∥Ḡp

k
]E(s̃h)∼π|θ̂p

[
H∑

h=1

∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡp
k)

−1

]

≤ βr

2
Eξ̃k

[∥ξ̃k − ξ
k
∥Ḡp

k
]E(s̃h)∼π|θ̂p

[
H∑

h=1

∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡp
k)

−1

]
.

We have a bound on the expected value of the sum of feature norms in the proof of Lemma 9. Also,

Eξ̃k
[∥ξ̃k − ξ

k
∥Ḡp

k
] ≤ Eξ̃k

[∥ξ̃k∥Ḡp
k
] + Eξ̃k

[∥ξ
k
∥Ḡp

k
]

≤
√
Eξ̃k

[∥ξ̃k∥2Ḡp
k

] +
√
xkd log(d/δ)

≤
√
xkd+

√
xkd log(d/δ)

The second line follows from Cauchy-Schwarz and by definition of ξ
k

. The last line is due to the fact that xk(Ḡp
k)

−1 ∼375

N (0, xkId), which implies ∥ξ̃k∥2Ḡp
k
∼ N (0, dxk). We conclude the proof by taking the sum of feature norms from the376

proof of Lemma 9.377

We conclude that with probability at least 1− 2δ:
K∑

k=1

V ⋆
1 (s

k
1)− Vθ̂p,θ̂r+ξ̄k,1

(sk1) ≤
βr

Φ(−1)
(
√
xkd+

√
xkd log(d/δ))

[√√√√ 3d

log(2)
log

(
1 +

αr∥A∥22B2
φ,A

η log(2)

)(
1 +

αrBφ,AH

η

)
Hd log(1 + αrη−1Bφ,AH)

+
√
KHd log (1 + αrη−1Bφ,AHK) log(e/δ2)

]
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Appendix C. Concentrations378

C.1 Concentration of the transition parameter379

We recall the important concentration of the maximum likelihood estimator for general bilinear exponential families (cf.380

Theorem 1 of Chowdhury et al. (2021)).381

Theorem 13 Suppose {Ft}∞t=0 is a filtration such that for each t, (i) st+1 is Ft-measurable, (ii) (st, at) is Ft−1

measurable, and (iii) given (st, at) , st+1 ∼ P p
θp (· | st, at) according to the exponential family defined by Equation (1).

Let θ̂p(k) be the penalized MLE defined by Equation (6), and let Zp
s,a(θ) be strictly convex in θ for all (s, a). Then, for

any δ ∈ (0, 1], with probability at least 1− δ, the following holds uniformly over all n ∈ N :
k∑

t=1

KLst,at

(
θ̂p(k), θp

)
+
η

2

∥∥∥θp − θ̂p(k)
∥∥∥2
A
− η

2
∥θp∥2A ≤ log

(
Cp

A,k

δ

)
,

where Cp
A,k =

(∫
Rd exp

(
−η

2 ∥θ
′∥2A
)
dθ′
)
/
(∫

Rd exp
(
−
∑k

t=1 KLst,at (θk, θ
′)− η

2 ∥θ
′ − θk∥2A

)
dθ′
)

. Define Gs,a
def
=(

φ(s, a)⊤A⊤
i Ajφ(s, a)

)
i,j∈[d]

, we have

Cp
A,k ≤ det

(
I + βpη−1A−1

k∑
t=1

Gst,at

)
,

where βp = supθ,s,a λmax

(
Cθ

s,a [ψ (s′)]
)
.382

A proof of this result can be found in the work Chowdhury et al. (2021). We provide an almost similar proof for the383

concentration of rewards in the next section.384

Corollary 14 The previous theorem implies a simple euclidean confidence region. Indeed, with probability at least
1− δ, for all k ∈ N ∥∥∥θp − θ̂p(k)

∥∥∥2
Ḡp

n

≤ 2

αp
βp(k, δ),

where βp(k, δ) def
= βp(k−1)H(δ) = 2

2B
2
A + log

(
2Cp

A,k/δ
)

.385

Proof The result follows from the following simple calculations:

1

2

∥∥∥θp − θ̂p(k)
∥∥∥2
Ḡk

=
(αp)−1η

2

∥∥∥θp − θ̂p(k)
∥∥∥2
A
+

k−1∑
τ=1

H∑
h=1

1

2

∥∥∥θp − θ̂p(k)
∥∥∥2
Gsτ

h
,aτ

h

≤ (αp)−1

(
η

2

∥∥∥θp − θ̂p(k)
∥∥∥2
A
+

k−1∑
τ=1

H∑
h=1

KLsτh,a
τ
h
(θk, θ)

)
.

386

387

C.2 Concentration of the reward parameter (contribution)388

Theorem 15 Suppose {Ft}∞t=0 is a filtration such that for each t, (i) r(st, at) is Ft-measurable, (ii) (st, at) is Ft−1

measurable, and (iii) given (st, at) , r(st, at) ∼ P r
θr (· | st, at) according to the exponential family defined by (2). Let

θ̂r(k) be the penalized MLE defined by Equation (8), and let Zr
s,a(θ) be strictly convex in θ for all (s, a). Then, for any

δ ∈ (0, 1], with probability at least 1− δ, the following holds uniformly over all k ∈ N :
k∑

t=1

KLst,at

(
θ̂r(k), θr

)
+
η

2

∥∥∥θr − θ̂r(k)
∥∥∥2
A
− η

2
∥θr∥2A ≤ log

(
Cr

A,k

δ

)
,
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where Cr
A,k =

(∫
Rd exp

(
−η

2 ∥θ
′∥2A
)
dθ′
)
/
(∫

Rd exp
(
−
∑k

t=1 KLst,at (θk, θ
′)− η

2 ∥θ
′ − θk∥2A

)
dθ′
)

. Define Gs,a
def
=(

φ(s, a)⊤A⊤
i Ajφ(s, a)

)
i,j∈[d]

, we have

CA,k ≤ det

(
I + βrη−1A−1

k∑
t=1

Gst,at

)
,

where βr := ∥B∥22 supθ,s,a Varθs,a(r).389

Proof We proceed similar to the proof of Theorem 1 in Chowdhury and Gopalan (2019).390

Step 1: Martingale construction. First, observe that by assuming strict convexity, the log-partition function Zr
s,a

becomes a Legendre function. Now for the conditional exponential family model, the KL divergence between
Prθr (· | s, a) and Prθ′r (· | s, a) can be expressed as a Bregman divergence associated to Zr

s,a with the parameters
reversed, i.e.

KLs,a (θ
r, θr′) := KL (Pθr(· | s, a), Pθr′(· | s, a)) = BZs,a

(θr′, θr) .

Now, for any λ ∈ Rd, we introduce the function BZn,α,θr(λ) = BZn,α (θr + λ, λ) and define

Mλ
n = exp

(
λ⊤Sn −

n∑
t=1

BZnt,at ,θ
r(λ)

)

where ∀i ≤ d, we denote (Sn)i =
∑n

t=1

(
r (st, at)− Eθr

st,at
[r]
)
B⊤Aiφ (st, at) . Note that Mλ

n > 0 and it is Fn−

measurable. Furthermore, we have for all (s, a),

Eθr

s,a

[
exp

(
d∑

i=1

λi

(
r (st, at)− Eθr

st,at
[r]
)
B⊤Aiφ (st, at)

)]

= exp
(
−λ⊤∇Zr

s,a (θ
r)
) ∫

S
exp

(
d∑

i=1

(θri + λi)B
⊤Aiφ(s, a)− Zr

s,a(θ
r)

)
dr

= exp
(
Zr
s,a(θ

r + λ)− Zr
s,a(θ

r)− λ⊤∇Zr
s,a(θ

r)
)
= exp

(
BZr

s,a
(θr)

)
This implies E

[
exp

(
λ⊤Sn

)
| Fn−1

]
= exp

(
λ⊤Sn−1 +BZnn,an,θr

(λ)
)

thus E
[
Mλ

n | Fn−1

]
= Mλ

n−1. Therefore{
Mλ

n

}∞
n=0

is a non-negative martingale adapted to the filtration {Fn}∞n=0 and actually satisfies E
[
Mλ

n

]
= 1. For any

prior density q(θ) for θ, we now define a mixture of martingales

Mn =

∫
Rd

Mλ
n q (θ

r + λ) dλ (19)

Then {Mn}∞n=0 is also a non-negative martingale adapted to {Fn}∞n=0 and in fact, E [Mn] = 1.391

Step 2: Method of mixtures. Considering the prior density N (0, (ηA)−1), we obtain from (19) that

Mn = c0

∫
Rd

exp

(
λ⊤Sn −

n∑
t=1

BZr
xt,at

,θr(λ)−
η

2
∥θr + λ∥2A

)
dλ, (20)

where c0 = 1∫
Rd exp(− η

2 ∥θ′∥2
Λ)dθ′ . We now introduce the function Zr

n(θ) =
∑n

t=1 Z
r
st,at

(θ). Note that Zr
n is a also

Legendre function and its associated Bregman divergence satisfies

BZr
n
(θ′, θ) =

n∑
t=1

(
Zr
st,at

(θ′)− Zr
st,at

(θ)− (θ′ − θ)
⊤ ∇Zr

St,at
(θ)
)
=

n∑
t=1

BZr
st,αt

(θ′, θ)
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Furthermore, we have
∑n

t=1BZr
st,αt

,θr(λ) = BZr
n,θ

r(λ). From the penalized likelihood formula (8), recall that

∀i ≤ d,

n∑
t=1

∇iZ
r
st,at

(
θ̂r(k)

)
+
η

2
∇i∥θ̂r(k)∥2A =

k∑
t=1

rtB
⊤Aiφ (st, at) .

This yields

Sk =

k∑
t=1

(
∇Zr

st,at

(
θ̂r(k)

)
−∇Zr

st,at
(θr)

)
+ ηAθ̂r(k) = ∇Zr

k

(
θ̂r(k)

)
−∇Zr

k (θ
r) + ηAθ̂r(k) (21)

We now obtain from (20) and (21) that

Mk = c0 · exp
(
−η
2
∥θr∥2A

)∫
Rd

exp
(
λ⊤xk −BZk,θ∗(λ) + gk(λ)

)
dλ, (22)

where we introduced gk(λ) = η
2

(
2λ⊤Aθ̂r(k) + ∥θr∥2A − ∥θr + λ∥2A

)
and xk = ∇Zr

k

(
θ̂r(k)

)
−∇Zr

k (θ
r).

Now, note that supλ∈Rd gk(λ) =
η
2

∥∥∥θr − θ̂r(k)
∥∥∥2
A

, where the supremum is attained at λ⋆ = θ̂r(k)− θr. We then have

gk(λ) = gn(λ) + sup
λ∈R⋆

gk(λ)− gk (λ
⋆)

=
η

2

∥∥∥θ̂r(k)− θr
∥∥∥2
A
+ η (λ− λ⋆)

⊤ A (θr + λ⋆) +
η

2
∥θr + λ⋆∥2A − η

2
∥θr + λ∥2A

= BZr
0

(
θr, θ̂r(k)

)
+ (λ− λ⋆)

⊤ ∇Zr
0 (θ

r + λ⋆) + Zr
0 (θ

r + λ⋆)− Zr
0 (θ

r + λ) (23)

where we have introduced the Legendre function Zr
0 (θ) =

η
2∥θ∥

2
A. We now have from (27) that

sup
λ∈Rd

(
λ⊤xn −BZr

n,θ
r(λ)

)
= B⋆

Zr
n,θ

r (xn) = B⋆
Zr

n,θ
r

(
∇Zr

n

(
θ̂r(n)

)
−∇Zr

n (θ
r)
)
= BZrn

(
θr, θ̂r(n)

)
.

Further, any optimal λ must satisfy

∇Zr
n (θ

r + λ)−∇Zr
n (θ

r) = xn =⇒ ∇Zr
n (θ

r + λ) = ∇Zr
n

(
θ̂r(n)

)
.

One possible solution is λ = λ⋆. Now, since Zr
n is strictly convex, the supremum is indeed attained at λ = λ⋆. We then

have

λ⊤xn −BZr
n,θ

r(λ)

= λ⊤xn −BZr
n,θ

r(λ) +BZr
n

(
θr, θ̂r(n)

)
−
(
λ⋆xn −BZr

n,θ
r (λ⋆)

)
= BZr

n

(
θr, θ̂r(n)

)
+ (λ− λ⋆)

⊤ ∇Zr
n (θ

r + λ⋆) +BZr
n,θ

∗ (λ⋆)−BZr
n,θ

∗(λ)

− (λ− λ⋆)
⊤ ∇Zr

n (θ
r)

= BZr
n

(
θr, θ̂r(n)

)
+ (λ− λ⋆)

⊤ ∇Zr
n (θ

r + λ⋆) + Zr
n (θ

r + λ⋆)− Zr
n (θ

r + λ) (24)
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Plugging Equation (23) and Equation (24) in Equation (22), we obtain

Mn = c0 · exp

 ∑
j∈{0,n}

BZr
j
(θr, θj)−

η

2
∥θr∥2A


×
∫
Rd

exp

 ∑
j∈{0,n}

(
(λ− λ⋆)

⊤ ∇Zr
j (θ

r + λ⋆) + Zr
j (θ

r + λ⋆)− Zr
j (θ

r + λ)
) dλ

= c0 · exp

 ∑
j∈{0,n}

BZr
j

(
θr, θ̂r(n)

)
− η

2
∥θr∥2


× exp

−
∑

j∈{0,n}

(
(θr + λ⋆)

⊤ ∇Zr
j (θ

r + λ⋆)− Zr
j (θ

r + λ⋆)
)

×
∫
Rd

exp

 ∑
j∈{0,n}

(
(θr + λ)

⊤ ∇Zr
j (θ

r + λ⋆)− Zr
j (θ

r + λ)
) dλ

=
c0
cn

exp

 ∑
j∈{0,n}

BZr
j

(
θr, θ̂r(n)

)
− η

2
∥θr∥2A


×

∫
Rd exp

(∑
j∈{0,n}

(
(θr + λ)

⊤ ∇Zr
j (θ

r + λ⋆)− Zr
j (θ

r + λ)
))

dλ∫
Rd exp

(∑
j∈{0,n}

(
(θ′)

⊤ ∇Zr
j (θ

r + λ⋆)− Zr
j (θ

′)
))

dθ′

=
c0
cn

· exp
(
BZn

(
θr, θ̂r(n)

)
+BZ0

(
θr, θ̂r(n)

)
− η

2
∥θr∥2A

)
,

where we introduced cn =
exp(

∑
j∈{0,n}((θ

r+λ∗)⊤∇Zr
j (θ

r+λ∗)−Zr
j (θ

r+λ∗)))∫
Rd exp(

∑
j∈{0,n}((θ′)⊤∇Zr

j (θ
r+λ∗)−Zr

j (θ
′)))dθ′ . Since λ⋆ = θ̂r(n)− θr, we have

cn =
1∫

Rd exp
(
−
∑

j∈{0,n}BZr
j
(θ′, θr + λ⋆)

)
dθ′

=
1∫

Rd exp

(
−
∑n

t=1BZst,at

(
θ′, θ̂r(n)

)
− η

2

∥∥∥θ′ − θ̂r(n)
∥∥∥2
A′

)
dθ′

Therefore, we have from (5) that

CA,n :=
cn
c0

=

∫
Rd exp

(
−η

2 ∥θ
′∥2A
)
dθ′∫

Rd exp

(
−
∑n

t=1 KLst,at

(
θ̂r(n), θ′

)
− η

2

∥∥∥θ′ − θ̂r(n)
∥∥∥2
A

)
dθ′

An application of Markov’s inequality now yields

P

[
n∑

t=1

KLst,at

(
θ̂r(n), θr

)
+
η

2

∥∥∥θr − θ̂r(n)
∥∥∥2
A
− η

2
∥θr∥2A ≥ log

(
CA,n

δ

)]
=P

[
Mn ≥ 1

δ

]
≤ δE [Mn]=δ

Step 3: A stopped martingale and its control. Let N be a stopping time with respect to the filtration {Fn}∞n=0.
Now, by the martingale convergence theorem, M∞ = limn→∞Mn is almost surely well-defined, and thus MN is
well-defined as well irrespective of whether N < ∞ or not. Let Qn = Mmin{N,n} be a stopped version of {Mn}n.
Then an application of Fatou’s lemma yields

E [MN ] = E
[
lim inf
n→∞

Qn

]
≤ lim inf

n→∞
E [Qn] = lim inf

n→∞
E
[
Mmin{N,n}

]
≤ 1,
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since the stopped martingale
{
Mmin{N,n}

}
n≥1

is also a martingale. Therefore, by the properties of Mn, (12) also holds392

for any random stopping time N <∞. To complete the proof, we now employ a random stopping time construction as393

in Abbasi-Yadkori et al. (2011)394

We define a random stopping time N by

N = min

{
n ≥ 1 :

n∑
t=1

KLst,at

(
θ̂r(n), θr

)
+
η

2

∥∥∥θr − θ̂r(n)
∥∥∥2
A
− η

2
∥θr∥2A ≥ log

(
CA, n

δ

)}
with min{∅} := ∞ by convention. We then have

P

[
∃n ≥ 1,

n∑
t=1

KLst,at

(
θ̂r(n), θr

)
+
η

2

∥∥∥θr − θ̂r(n)
∥∥∥2
A
− η

2
∥θr∥2A ≥ log

(
CA,n

δ

)]
= P[N <∞] ≤ δ,

which concludes the proof of the first part.395

396

Proof of second part: upper bound on CA,n. First, we have for some θ̃ ∈
[
θ̂r(n), θ′

]
∞

that

KLs,a

(
θ̂r(n), θ′

)
=

1

2

d∑
i,j=1

(
θ′ − θ̂r(n)

)
i
Varθs,a(r)× φ(s, a)⊤A⊤

i BB
⊤Ajφ(s, a)

(
θ′ − θ̂r(n)

)
j

(25)

Now (25) implies that
n∑

t=1

KLst,at

(
θ̂r(n), θ′

)
≤ β

2

n∑
t=1

d∑
i,j=1

(
θ′ − θ̂r(n)

)
i
φ (st, at)

⊤
A⊤

i Ajφ (st, at)
(
θ′ − θ̂r(n)

)
j

=
βr

2

∥∥∥θ′ − θ̂r(n)
∥∥∥2∑n

t=1

Gst,at
,

where βr := λmax

(
BB⊤) × supθ,s,a Varθs,a(r) and ∀i, j ≤ d, (Gs,a)i,j := φ(s, a)⊤A⊤

i Ajφ(s, a). Therefore, we
obtain

CA,n ≤

∫
Rd exp

(
−η

2 ∥θ
′∥2A
)
dθ′∫

Rd exp

(
− 1

2

∥∥∥θ′ − θ̂r(n)
∥∥∥2
(βr

∑n
t=1 Gst,at+ηA)

)
dθ′

=
(2π)d/2

det(ηA)1/2
×

det (βr
∑n

t=1Gst,at
+ ηA)1/2

(2π)d/2
= det

(
I + βrη−1A−1

n∑
t=1

Gst,at

)
,

which completes the proof of the second part.397

398

399

Corollary 16 Here also, the theorem implies a euclidean control. With probability at least 1− δ uniformly over k ∈ N∥∥∥θr − θ̂r(k)
∥∥∥2
Ḡr

k

≤ 2

αr
βr(k, δ),

where βr(k, δ) def
= βr(k−1)H(δ) = 2

2B
2
A + log

(
2Cr

A,k/δ
)

.400

C.3 Gaussian concentration and anti-concentration401

Lemma 17 (Gaussian concentration, ref. Appendix A in Abeille and Lazaric (2017)) Let ξtk ∼ N (0, Hνk(δ)Σ
−1
tk ).

For any δ > 0, with probability 1− δ

∥ξtk∥Σtk
≤ c
√
Hdνk(δ) log(d/δ) (26)

for some absolute constant c.402
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Lemma 18 (Gaussian anti-concentration, ref. Appendix A in Abeille and Lazaric (2017)) Let ξ ∼ N (0, Id), for
any u ∈ Rd with ∥u∥ = 1, we have:

P(u⊤ξ ≥ 1) ≥ Φ(−1),

where Φ is the normal CDF.403

Thanks to lower bounds on the error function, we have the following bound on the probability of anti-concentration404

Φ(−1) ≥ 1/(4
√
eπ).405

Appendix D. Technical results406

D.1 A transportation lemma407

For any function f : X → R, we define its span as S(f) := maxx∈X f(x) − minx∈X f(x). For a probability408

distribution P supported on the set X , let EP [f ] := EP [f(X)] and VP [f ] := VP [f(X)] = EP

[
f(X)2

]
− EP [f(X)]2409

denote the mean and variance of the random variable f(X), respectively. We now state the following transportation410

inequalities, which can be adapted from Boucheron et al. (2013) (Lemma 4.18).411

Lemma 19 (Transportation inequalities) Assume f is such that S(f) and VP [f ] are finite. Then it holds

∀Q≪ P, EQ[f ]− EP [f ] ≤
√
2VP [f ]KL(Q,P ) +

2S(f)

3
KL(Q,P )

∀Q≪ P, EP [f ]− EQ[f ] ≤
√
2VP [f ]KL(Q,P )

D.2 Bregman divergence412

For a Legendre function F : Rd → R, the Bregman divergence between θ′, θ ∈ Rd associated with F is defined as
BF (θ′, θ) := F (θ′)− F (θ)− (θ′ − θ)

⊤ ∇F (θ). Now, for any fixed θ ∈ Rd, we introduce the function

BF,θ(λ) := BF (θ + λ, λ) = F (θ + λ)− F (θ)− λ⊤∇F (θ).

It then follows that BF,θ is a convex function, and we define its dual as

B⋆
F,θ(x) = sup

λ∈Rd

(
λ⊤x−BF,θ(λ)

)
We have for any θ, θ′ ∈ Rd:

BF (θ′, θ) = B⋆
F,θ′ (∇F (θ)−∇F (θ′)) (27)

To see this, we observe that

B⋆
F,θ′ (∇F (θ)−∇F (θ′))

= sup
λ∈Rd

λ⊤ (∇F (θ)−∇F (θ′))−
[
F (θ′ + λ)− F (θ′)− λ⊤∇F (θ′)

]
= sup

λ∈Rd

λ⊤∇F (θ)− F (θ′ + λ) + F (θ′) .

Now an optimal λ must satisfy ∇F (θ) = ∇F (θ′ + λ). One possible choice is λ = θ − θ′. Since, by definition, F is
strictly convex, the supremum will indeed be attained at λ = θ − θ′. Plugin-in this value, we obtain

B⋆
F,θ′ (∇F (θ)−∇F (θ′)) = (θ − θ′)

⊤ ∇F (θ)− F (θ) + F (θ′) = BF (θ′, θ) .

Note that (27) holds for any convex function F . Only difference is that, in this case, BF (·, ·) will not correspond to the413

Bregman divergence.414
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D.3 Properties of the bilinear exponential family415

In this section, we detail some useful results related to exponential families in our model.416

D.3.1 DERIVATIVES417

Lemma 20 (Gradients) We provide the derivatives of the log-partitions in closed form. As usual with exponential
families, these are intimately linked to moments of the random variable. We have:(

∇iZ
p
s,a

)
(θ) = Eθ

s,a [ψ (s′)]
⊤
Aiφ(s, a).

And (
∇iZ

r
s,a

)
(θ) = Eθ

s,a [r] B
⊤Aiφ(s, a).

Proof We prove the lemma as follows

(
∇iZ

p
s,a

)
(θ) =

∫
S
ψ (s′)

⊤
Aiφ(s, a)

exp
(∑d

i=1 θiψ (s′)
⊤
Aiφ(s, a)

)
∫
S exp

(∑d
i=1 θtψ (s′)

⊤
Aiφ(s, a)

)
ds′

ds′

= Eθ
s,a [ψ (s′)]

⊤
Aiφ(s, a)

(
∇iZ

r
s,a

)
(θ) =

∫
S
rB⊤Aiφ(s, a)

exp
(
r
∑d

i=1 θiB
⊤Aiφ(s, a)

)
∫
S exp

(
r
∑d

i=1 θiB
⊤Aiφ(s, a)

)
dr
dr

= Eθ
s,a [r] B

⊤Aiφ(s, a)

418

419

Lemma 21 (Hessians) The entries of the Hessians of the log partition functions are given by(
∇2

i,jZ
p
s,a

)
(θ) = φ(s, a)⊤A⊤

i Cθ
s,a [ψ (s′)]Ajφ(s, a),

where Cθ
s,a [ψ (s′)]

def
= Eθ

s,a

[
ψ (s′)ψ (s′)

⊤
]
− Eθ

s,a [ψ (s′)]Eθ
s,a

[
ψ (s′)

⊤
]
.420

Similarly, (
∇2

i,jZ
r
s,a

)
(θ) = Varθs,a(r)× φ(s, a)⊤A⊤

i BB
⊤Ajφ(s, a),

where Varθs,a(r)
def
=
(
Eθ
s,a

[
r2
]
− Eθ

s,a [r]
2
)

is the variance of the reward under θ.421

Proof We prove these formulas by differentiating under the integral sign.

(
∇2

i,jZ
p
s,a

)
(θ) =

∫
S
ψ (s′)

⊤
Aiφ(s, a)ψ (s′)

⊤
Ajφ(s, a)

exp
(∑d

i=1 θiψ (s′)
⊤
Aiφ(s, a)

)
∫
S exp

(∑d
i=1 θiψ (s′)

⊤
Aiφ(s, a)

)
ds′

ds′

−
∫
S
ψ (s′)

⊤
Aiφ(s, a)

exp
(∑d

i=1 θiψ (s′)
⊤
Aiφ(s, a)

)
∫
S exp

(∑d
i=1 θiψ (s′)

⊤
Aiφ(s, a)

)
ds′

ds′ (∇jZs,a) (θ)

= Eθ
s,a

[
ψ (s′)

⊤
Aiφ(s, a)ψ (s′)

⊤
Ajφ(s, a)

]
− Eθ

s,a

[
ψ (s′)

⊤
Aiφ(s, a)

]
Eθ
s,a

[
ψ (s′)

⊤
Ajφ(s, a)

]
=φ(s, a)⊤A⊤

i

(
Eθ
s,a

[
ψ (s′)ψ (s′)

⊤
]
− Eθ

s,a [ψ (s′)]Eθ
s,a

[
ψ (s′)

⊤
])
Ajφ(s, a)

=φ(s, a)⊤A⊤
i Cθ

s,a [ψ (s′)]Ajφ(s, a),

28
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where we introduce in the last line the p× p covariance matrix given by

Cθ
s,a [ψ (s′)] = Eθ

s,a

[
ψ (s′)ψ (s′)

⊤
]
− Eθ

s,a [ψ (s′)]Eθ
s,a

[
ψ (s′)

⊤
]

The proof of the form of the Hessian for the reward partition function follows the same steps as above.422

423

Lemma 22 (KL Divergences) For any two θ, θ′ and for some pair (s, a),

∃θ̃ ∈ [θ, θ′]∞ , KL (P p
θ (· | s, a), P

p
θ′(· | s, a)) =

1

2
(θ − θ′)

⊤ (∇2Zp
s,a

)
(θ̃) (θ − θ′) ,

where [θ, θ′]∞ denotes the d-dimensional hypercube joining θ to θ′.424

Similarly

∃θ̃ ∈ [θ, θ′]∞ , KL (P r
θ (· | s, a), P r

θ′(· | s, a)) =
1

2
(θ − θ′)

⊤ (∇2Zr
s,a

)
(θ̃) (θ − θ′) .

Proof We start by writing:

log

(
P p
θ (s′ | s, a)

P p
θ′ (s′ | s, a)

)
=

d∑
i=1

(θi − θ′i)ψ (s′)
⊤
Aiφ(s, a)− Zp

s,a(θ) + Zp
s,a (θ

′) ,

then

KL (P p
θ (· | s, a), P

p
θ′(· | s, a)) =

d∑
i=1

(θi − θ′i)Eθ
s,a [ψ (s′)]

⊤
Aiφ(s, a)− Zp

s,a(θ) + Zp
s,a (θ

′)

=
1

2
(θ − θ′)

⊤ (∇2Zp
s,a

)
(θ̃) (θ − θ′) ,

where in the last line, we used, by a Taylor expansion, that Zs,a (θ
′) = Zs,a(θ) + (∇Zs,a(θ))

⊤
(θ′ − θ) + 1

2 (θ−425

θ′)
⊤
(
∇2Zs,a(θ̃)

)
(θ − θ′) for some θ̃ ∈ [θ, θ′]∞.426

The proof of the form of the KL divergence for the reward follows the same steps as above.427

428

D.3.2 A TRANSPORTATION LEMMA FOR REWARDS429

Lemma 23 We provide a closed-form formula for the difference of expected rewards under two distinct parameters:

∃θ3 ∈ [θ1, θ2], Eθ1
s,a [r] = Eθ2

s,a [r] +
Varθ3s,a(r)

2
B⊤Mθ1−θ2φ(s, a)

Proof Let’s recall the gradient of the reward log partition function:(
∇iZ

r
s,a

)
(θr) = Eθr

s,a [r] B
⊤Aiφ(s, a)

then for all θr′ we have:
Eθr

s,a [r] =
1

B⊤Mθr′φ(s, a)
∇iZ

r
s,a(θ

r)⊤θr′

Let θ1, θ2 ∈ Rd, using Taylor-Cauchy’s formula there exists θ3 ∈ [θ1, θ2] such that:

Eθ1
s,a [r] = Eθ2

s,a [r] +
1

2B⊤Mθr′φ(s, a)
(θ1 − θ2)

⊤∇2Zr
s,a(θ3)

⊤θr′

We know that
(
∇2

i,jZ
r
s,a

)
(θ) = Varθs,a(r)× φ(s, a)⊤A⊤

i BB
⊤Ajφ(s, a), choosing θr′ = θ1 − θ2 we find:

Eθ1
s,a [r] = Eθ2

s,a [r] +
Varθ3s,a(r)

2
B⊤Mθ1−θ2φ(s, a).

430

431
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D.4 Elliptical potentials and elliptical lemma432

D.4.1 ELLIPTICAL LEMMA433

Here we show a lemma that is popular for regret control in linear MDPs and linear Bandits.434

First, consider the notations: Gs,a := (φ(s, a)⊤A⊤
i Ajφ(s, a))1≤i,j≤d , Ḡe

n ≡ Ḡe
(k−1)H := Gn + (αe)−1ηA , and435

Gn ≡ G(k−1)H :=
∑k−1

τ=1

∑H
h=1Gsτs ,a

τ
h

. Where e represents either r or p, we omit the superscript e w.l.o.g in the436

rest of this section.437

Lemma 24 (Elliptical lemma and variant for bounded potentials) Let c ∈ R+, we can bound the sum of feature norms
as follows

T∑
t=1

min{c,
H∑

h=1

∥∥∥Ḡ−1/2
n Gs,aḠ

−1/2
n

∥∥∥} ≤ c

log(1 + c)
d log

(
1 + αη−1Bφ,An

)
.

where Bφ,A := sups,a
∥∥A−1Gs,a

∥∥.438

Further, we have

T∑
t=1

H∑
h=1

∥∥∥Ḡ−1/2
n Gs,aḠ

−1/2
n

∥∥∥ ≤ 2d log
(
1 + αη−1Bφ,An

)
+

3dH

log(2)
log

(
1 +

α∥A∥22B2
φ,A

η log(2)

)

Proof First we have

∥Ḡ−1/2
n Gs,aḠ

−1/2
n ∥ =

√
tr(Ḡ

−1/2
n Gs,aḠ

−1/2
n Ḡ

−1/2
n Gs,aḠ

−1/2
n )

≤ tr(Ḡ−1/2
n Gs,aḠ

−1/2
n ) = tr(Ḡ−1

n Gs,a) = tr(a⊤
h Ḡ

−1
n ah)

the last line is because Gs,a = aha
⊤
h , where ah = (Aiφ(sh, ah))i∈[d].439

First result. Consider h ∈ [H], denote (λh,i)i ∈ [d] the eigenvalues of a⊤
h Ḡ

−1
n ah. Ḡn is positive definite hence

λh,i > 0,∀h, i, then

min{c,
H∑

h=1

tr(a⊤
h Ḡ

−1
n ah)} = min{c,

H∑
h=1

d∑
i=1

λh,i}

≤ c

log(1 + c)

H∑
h=1

d∑
i=1

log(1 + λh,i) (log is concave)

≤ c

log(1 + c)

H∑
h=1

log(

d∏
i=1

1 + λh,i) =
c

log(1 + c)

H∑
h=1

log det(I + a⊤
h Ḡ

−1
n ah)

≤ c

log(1 + c)
log

(
det(Ḡn +

∑H
h=1Gsh,ah

)

det(Ḡn)

)
where the last line follows from the matrix determinant lemma:

det
(
Ḡn + aha

⊤
h

)
= det(I + a⊤

h Ḡ
−1
n ah) det(Ḡn)

Therefore:
T∑

t=1

min{c,
H∑

h=1

∥∥∥Ḡ−1
n Gsth,a

t
h

∥∥∥} ≤ c

log(1 + c)

T∑
t=1

log
det
(
Ḡn+H

)
det
(
Ḡn

) ,
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We can now control the R.H.S. of the above equation, as

T∑
t=1

log
det
(
Ḡn+H

)
det
(
Ḡn

) =

T∑
t=1

log
det
(
ḠtH

)
det
(
Ḡ(t−1)H

) = log
det
(
ḠTH

)
det
(
Ḡ0

)
= log

det
(
ḠN

)
det ((αp)−1ηA)

= log det
(
I + αη−1 A−1GN

)
≤ d log

(
1 +

αpη−1

d
tr
(
A−1Gn

))
(Trace-determinant (or AM-GM) inequality)

≤ d log
(
1 + αpη−1Bφ,An

)
This concludes the proof of the first result.440

Second result. First, we have sups,a ∥Gs,a∥2 ≤ ∥A∥2Bφ,A.441

Fix an episode k ∈ [K], n = (k − 1)H , using Lemma 26, we know that the number of times h ∈ [h] such that∥∥Ḡ−1
n Gsh,ah

∥∥ ≥ 1 is smaller than 3d
log(2) log

(
1 +

α(∥A∥2Bφ,A)
2

η log(2)

)
. Let us call Tk := {h ∈ [H]

∥∥∥Ḡ−1
(k−1)hGsh,ah

∥∥∥ ≤ 1},
then

T∑
t=1

H∑
h=1

∥∥∥Ḡ−1
n Gsth,a

t
h

∥∥∥ ≤ 3d

log(2)
log

(
1 +

α∥A∥22B2
φ,A

η log(2)

)
+
∑
h∈Tk

min{1,
∥∥∥Ḡ−1

n Gsth,a
t
h

∥∥∥}
the sum of the right hand side is similar to the first result. Although the sum is not contiguous, the previous bound holds442

since if h1 < h2,det(Ḡn+h1
) ≤ det(Ḡn+h2

), this concludes the proof.443

444

Remark 25 We can also write from the lemma in terms of ∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k)

−1 by skipping the norm
upper bound at the beginning of the proof:

T∑
t=1

min{c,
H∑

h=1

∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k)

−1} ≤ c

log(1 + c)
d log

(
1 + αη−1Bφ,An

)
.

and

T∑
t=1

H∑
h=1

∥(Aiφ(s̃h, π(s̃h)))1≤i≤d∥(Ḡr
k)

−1 ≤2d log
(
1 + αη−1Bφ,An

)
+

3dH

log(2)
log

(
1 +

α∥A∥22B2
φ,A

η log(2)

)

D.4.2 ELLIPTICAL POTENTIALS: FINITE NUMBER OF LARGE FEATURE NORMS (CONTRIBUTION)445

Lemma 26 (Worst case elliptical potentials, adaptation of Exercise 19.3 Lattimore and Szepesvári (2020) for matrices)
Let V0 = λI and a1, . . . , an ∈ Rd×p be a sequence of matrices with ∥at∥2 ≤ L for all t ∈ [n]. Let Vt =

V0 +
∑t

s=1 asa
⊤
s , then ∣∣∣{t ∈ N∗, ∥at∥V −1

t−1
≥ 1}

∣∣∣ ≤ 3d

log(2)
log

(
1 +

L2

λ log(2)

)
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Proof Let T be the set of rounds t when ∥at∥V −1
t−1

≥ 1 and Gt = V0 +
∑t

s=1 IT (s)asa⊤s . Then(
dλ+ |T |L2

d

)d

≥
(
trace (Gn)

d

)d

≥ det (Gn) (Trace-determinant inequality)

= det (V0)
∏
t∈T

(
1 + ∥at∥2G−1

t−1

)
≥ det (V0)

∏
t∈T

(
1 + ∥at∥2V −1

t−1

)
≥ λd2|T |

where the third line follows from the matrix determinant lemma:

det
(
Ḡn + aha

⊤
h

)
= det(I + a⊤

h Ḡ
−1
n ah) det(Ḡn).

Rearranging and taking the logarithm shows that

|T | ≤ d

log(2)
log

(
1 +

|T |L2

dλ

)
Abbreviate x = d/ log(2) and y = L2/dλ, which are both positive. Then

x log(1 + y(3x log(1 + xy))) ≤ x log
(
1 + 3x2y2

)
≤ x log(1 + xy)3 = 3x log(1 + xy).

Since z − x log(1 + yz) is decreasing for z ≥ 3x log(1 + xy) it follows that

|T | ≤ 3x log(1 + xy) =
3d

log(2)
log

(
1 +

L2

λ log(2)

)
.
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Appendix E. Tractable planning with random Fourier transform448

A Primer on random Fourier transforms. We start by defining the Random Fourier Transform and its most relevant
property. Let us consider the transition model of Equation (1), we have

P(s′ | s, a, θ) = exp (ψ(s′)Mθφ(s, a)− Zθ(s, a)) = Ep(w,b) [f (ψ(s
′), w, b) f (Mθφ(s, a), w, b)] ,

where f (x,w, b) =
√
2 cos(w⊤x+ b) are the random Fourier bases. p(w, b) = N (0, σ−2I)× U([0, 2π]), such that449

N is the Gaussian distribution, U is the Uniform distribution, and p(w, b) is a coupling among them.450

Notice that this provides an alternative approach to decompose the transition kernel and obtain linearity of the value451

function. Moreover, since ∀x,w ∈ Rd, b ∈ R, |f(x,w, b)| ≤
√
2, we can use Hoeffding’s inequality to prove that a452

Monte-Carlo approximation of P(s′ | s, a, θ) using N sample pairs of (w, b) guarantees an error smaller than ϵ with453

probability at least 1− 2 exp(−Nϵ2/4). Rahimi and Recht (2007) proves a stronger result: it provides an algorithm454

approximating the Gaussian kernel for which the following uniform convergence bound holds.455

Lemma 27 Let M be a compact subset of Rp with diameter diam(M). Then, using the explicit mapping z defined in
Algorithm 1 in Rahimi and Recht (2007) with N samples, we have

Pr

[
sup

x,y∈M
|z(x)′z(y)− k(y,x)| ≥ ϵ

]
≤ 28

(
σp diam(M)

ϵ

)2

exp

(
− Nϵ2

4(p+ 2)

)
where σ2

p ≡ Ep [ω
′ω] is the second moment of the Fourier transform of k.456
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Further, it implies that if N = Ω
(

p
ϵ2 log

σp diam(M)
ϵ

)
, then supx,y∈M |z(x)′z(y)− k(y,x)| ≤ ϵ with constant457

probability.458

Application to planning in BEF-RLSVI. Since our regret analysis is done under the high probability event of bounded459

estimation parameters, we know that the spaces of ψ(s′) and Mθφ(s, a) are bounded and the diameter depends on the460

dimensions. We abstain from explicating the exact diameter as it only influences the number of samples logarithmically.461

Using N ≈ p/ϵ2 samples, we can construct a uniform ϵ-approximation of P(s′ | s, a, θ).462

Let’s call V̂h the estimated value function using Algorithm 3 with the above approximation of transition. Here, we
elucidate the span of this estimation of value function. First we have:

V̂ π
H − V π

H =

∫
s′
(P̂ − P )(s′ | s, a)r(s′, π(s′)) ds′ ≤ ϵdH3/2

Here, we use the facts that S
(
Vθ̂,θ̃x,h

)
≤ dH3/2 (cf. Section B.2) and the error in approximating P is bounded by ϵ,463

i.e. sups′,s,a |(P̂ − P )(s′|s, a)| ≤ ϵ.464

Assume that at step h+ 1, we have V̂ π
h+1 − V π

h+1 ≤
∑h+1

j=1 ϵ
jαh+1,j . Then, we obtain

V̂ π
h − V π

h ≤
∫
s′
(P̂ − P )(s′ | s, a)V̂ π

h+1(s
′) ds′ +

∫
s′
P (s′ | s, a)(V̂ π

h+1 − V π
h+1)(s

′) ds′

=

∫
s′
(P̂ − P )(s′ | s, a)(V π

h+1 + V̂ π
h+1 − V π

h+1) ds
′ +

∫
s′
P (s′ | s, a)(V̂ π

h+1 − V π
h+1)(s

′) ds′

≤ ϵ(dH3/2 +

h+1∑
j=1

ϵjαh+1,j) +

h+1∑
j=1

ϵjαh+1,j

≤ ϵ(dH3/2 + αh+1,1) +

h+1∑
j=2

ϵj(αh+1,j−1 + αh+1,j) + ϵh+2αh+1,h+1

Using the fact that α1,1 = dH3/2 and with a proper induction, we find that:

V̂ π
1 − V π

1 ≤ ϵdH5/2 1− ϵH−h

1− ϵ
≤

H→∞
ϵdH5/2

This concludes the proof of the arguments provided in § Planning of Section 4. This means that the extra regret due465

to planning with the approximation by RFT features is of order O(ϵdH5/2K). By choosing an ϵ of order 1/(H
√
K),466

we deduce that approximating the probability kernel with O(pH2K) samples induces a tractable planning procedure467

without harming the regret.468

Remark 28 The reader might be tempted to combine the finite approximation using RFT with algorithms from the469

linear reinforcement learning literature Jin et al. (2020). However, note that the dimensionality of the linear space470

induced by RFT is polynomial in H and K. Consequently, applying algorithms designed with the assumption of linear471

value function would incur a linear regret.472

33


	Introduction
	Bilinear exponential family of MDPs
	BEF-RLSVI: algorithm design and frequentist regret bound
	BEF-RLSVI: algorithm design
	BEF-RLSVI: regret upper-bound
	Algorithm design: building blocks of BEF-RLSVI
	Theoretical analysis: proof outline
	Bounding the estimation error
	Bounding the learning error

	Related works: functional representations with regret and tractability
	Conclusion and future work
	Notations

	Regret analysis
	Estimation error
	Transition estimation
	Reward estimation

	Learning error
	Stochastic optimism
	Controlling the learning error


	Concentrations
	Concentration of the transition parameter
	Concentration of the reward parameter (contribution)
	Gaussian concentration and anti-concentration
	Technical results
	A transportation lemma
	Bregman divergence
	Properties of the bilinear exponential family
	Derivatives
	A transportation lemma for rewards

	Elliptical potentials and elliptical lemma
	Elliptical lemma
	Elliptical potentials: finite number of large feature norms (contribution)


	Tractable planning with random Fourier transform




